透過您的圖書館登入
IP:18.118.26.90
  • 學位論文

混摻有機陽離子應用於碳電極無鉛鈣鈦礦太陽能電池

Application of hybrid organic cations in mesoscopic carbon electrode tin-based perovskite solar cells

指導教授 : 刁維光 楊耀文

摘要


在本文中,我們將混摻的有機陽離子應用到碳電極無鉛鈣鈦礦太陽能電池中,我們所用的混摻陽離子為甲脒氫碘酸(Formamidinium iodide, FAI)與乙醇銨碘(2-Hydroxyethylammonium iodide, HEAI)。改變甲脒氫碘酸與乙醇銨碘的相對含量,我們能夠透過晶格結構的改變來調整光譜的性質。以無鉛鈣鈦礦FASnI3所製備的元件因為滲透不好、結晶快和能階不匹配的問題,造成嚴重漏電的情形,其光電轉換效率僅有0.9%。然而透過混摻入HEAI陽離子後,有助於改善鈣鈦礦前驅物溶液滲透,光電轉換效率最高可以達到2.5%。此外,不同比例HEAI含量在元件的光電轉換表現也將在本文中探討。 為了更進一步提升元件的光電轉換效率,我們利用乙醚作為反溶劑,透過將元件浸泡入乙醚中,加速鈣鈦礦的結晶,有較好的結晶性,並透過混溶劑提升前驅物在元件的滲透與添加微量的二碘乙二銨(EDAI2)修飾鈣鈦礦,最後在光電轉換效率上達到平均3.2±0.26%和最高光電轉換效率3.7%。因此,在本文中我們成功透過新的方法製備,並混摻40%-HEAI陽離子與添加3%的EDAI2,成功將光電轉換效率由0.9%提升到3.7%。

並列摘要


In this thesis, we employed the hybrid organic cations into the mesoscopic carbon electrode tin-based perovskite solar cells. The cations we used are formamidinium iodide (FAI) and 2-hydroxyethylammonium iodide (HEAI). By adjusting the amount of HEAI, we were able to tune the optical properties of the perovskite due to the changing of crystal structure. For our reference perovskite i.e. FASnI3, the performance suffers from huge leakage current and the obtained efficiency is only 0.9% due to the poor penetration, rapid crystallization and energy level mismatch. However, by applying the hybrid perovskite to our mesoscopic carbon electrode solar cell, the device performance reached 2.5%. Additionally, the variation in device performance with the alteration of HEAI amount was investigated in details. To further improve our device performance, we used diethyl ether as antisolvent to facilitate the crystal growth in our device. By mixing solvent to improve the penetration of the perovskite precursor and adding various percent of ethylenediammonium diiodide (EDAI2) as additives to modify the crystallinity of the perovskite, the device performance successfully reached to 3.2±0.26% and 3.7% for the champion cell. Hence, in this work we successfully demonstrated a novel strategy to further enhance the photovoltaic performance of pristine FASnI3 from 0.9% to 3.7% using 40% of HEAI as a substitute for FAI with 3% of EDAI2 as additives.

參考文獻


(1) National Renewable Energy Laboratory (NREL), Golden, CO
(2) Hoefler, S. F.; Trimmel, G.; Rath, T. Monatshefte für Chemie - Chemical Monthly 2017, 148, 795.
(3) Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14, 2584.
(4) Philippe, B.; Park, B.-W.; Lindblad, R.; Oscarsson, J.; Ahmadi, S.; Johansson, E. M. J.; Rensmo, H. Chem. Mater. 2015, 27, 1720.
(5) Pazoki, M.; Johansson, M. B.; Zhu, H.; Broqvist, P.; Edvinsson, T.; Boschloo, G.; Johansson, E. M. J. The Journal of Physical Chemistry C 2016, 120, 29039.

延伸閱讀