透過您的圖書館登入
IP:3.17.162.250
  • 學位論文

Tamm電漿極化子氫氣感測器

Tamm plasmon polaritons hydrogen sensor

指導教授 : 陳國平

摘要


Tamm電漿子 (Tamm Plasmon Polaritons, TPPs) 共振可以被激發在分散式布拉格反射鏡 (distributed Bragg reflector, DBR) 的光子禁止能隙中,藉由結合一個金屬薄膜和DBR。在本論文中,我們提出TPP氫氣感測器有鈀 (Palladium, Pd) 在結構上方。當與氫氣反應後,TPP的共振波長將會紅移因為氫氣所導致的鈀金屬晶格擴張。利用這個DBR面入射的TPP結構可以達到趨近零的反射率,並產生接近三個數量級的感測能力增強相較於金屬面入射的TPP結構。這個TPP氫氣感測器在可見光波段有能力偵測到低濃度的氫氣。其感測能力會隨著環境氫氣濃度有線性變化從0.5 vol.%到4 vol.%氫氣在氮氣中,而且其最低偵測極限 (Limit of detection, LOD) 的氫氣濃度約0.29 vol.%。

關鍵字

氫氣 感測器 電漿子

並列摘要


Tamm plasmon polaritons (TPPs) resonance can be excited within the stopband of a distributed Bragg reflector (DBR) by combining a thin metal film. In this work, the proposed TPPs hydrogen sensor is with palladium (Pd) on the top. When reacting with the hydrogen gas, the TPP resonance wavelength will be red-shifted due to the hydrogen-induced palladium lattice expansion. By utilizing the DBR-side TPP structure, the near-zero reflectance can be achieved, leading to more than 3 orders of magnitude changes in reflectance compared to metal-side TPP structure. The proposed TPP hydrogen structure enables to detect with low H2 concentration in N2 at visible wavelengths. The sensitivity of proposed TPP hydrogen sensor have a linear response from 0.5 vol.% to 4 vol.% H2 in N2, which has the limit of detection (LOD) about 0.29 vol.%.

並列關鍵字

Palladium Hydrogen Sensor Plasmon

參考文獻


[1] A. Züttel, A. Borgschulte, and L. Schlapbach, "Hydrogen as a future energy carrier," ed, 2008.
[2] C. Wadell, S. Syrenova, and C. Langhammer, "Plasmonic hydrogen sensing with nanostructured metal hydrides," ACS nano, vol. 8, pp. 11925-11940, 2014.
[3] X. Xia, W. Wu, Z. Wang, Y. Bao, Z. Huang, and Y. Gao, "A hydrogen sensor based on orientation aligned TiO2 thin films with low concentration detecting limit and short response time," Sensors and Actuators B: Chemical, vol. 234, pp. 192-200, 2016.
[4] J. Moon, H.-P. Hedman, M. Kemell, A. Tuominen, and R. Punkkinen, "Hydrogen sensor of Pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate," Sensors and Actuators B: Chemical, vol. 222, pp. 190-197, 2016.
[5] Y. Wang, Z. Zhao, Y. Sun, P. Li, J. Ji, Y. Chen, et al., "Fabrication and gas sensing properties of Au-loaded SnO2 composite nanoparticles for highly sensitive hydrogen detection," Sensors and Actuators B: Chemical, vol. 240, pp. 664-673, 2017.

延伸閱讀