透過您的圖書館登入
IP:18.218.209.8
  • 學位論文

使用金屬有機化學氣相沉積系統以介面差排陣列磊晶技術改善銻化銦鎵磊晶品質對互補式金屬氧化物半導體之應用

MOCVD INTERFACIAL MISFIT GROWTH TECHNIQUE AND QUALITY IMPROVEMENT OF INGASB EPILAYER FOR CMOS APPLICATIONS

指導教授 : 張翼

摘要


摘要 目前矽基互補式金屬氧化物半導體(Si-based CMOS)之電晶體尺寸已到很難再持續縮小的地步。三五族複合物半導體材料,如銻化銦鎵(InxGa1-xSb materials),本身具有高載子遷移率,載子有效質量小、可調變之能隙等特性,將三五族複合物半導體材料與砷化鎵或矽基板結合將有希望成為下一代金屬氧化物半導體。此論文主要聚焦在使用有機化學氣相沉積系統(metalorganic chemical vapor deposition system)以介面差排成長模式(interfacial misfit dislocation growth mode)來成長高品質銻化銦鎵磊晶層於砷化鎵基板上,並研究快速熱退火(rapid thermal annealing)對銻化銦鎵材料品質之影響,並探討不同熱退火溫度與磊晶品質之關係。研究結果顯示當退火溫度在550 oC左右時,銻化銦鎵磊晶層品質有顯著的提升,主要原因是使用快速熱退火程序使磊晶層中螺紋狀差排(threading dislocation)間相互消滅(annihilation)並使IMF陣列(IMF array)均勻度獲得改善。關於銻化銦鎵磊晶層經由低溫/高溫砷化鎵緩衝層(LT/HT-GaAs buffer layer)技術成長於矽基板上,本研究亦成功驗證將低溫砷化鎵緩衝層磊晶成長於矽基板上(偏角度:0度),此層對無反相畴(anti-phase domain boundary)的高溫砷化鎵磊晶成長技術來說是個重要的議題。此論文研究結果對未來銻化銦鎵金屬氧化物半導體及MOCVD磊晶技術來說提供重要資訊。

關鍵字

MOCVD, XRD, AFM

並列摘要


Abstract While the scaling-down issue of Si complementary metal oxide semiconductor (CMOS) devices has reached a critical point, the growth of III-V compound semiconductors, especially InxGa1-xSb materials, on GaAs or Si substrates has been considered as the next generation of CMOS devices based on its excellent properties such as high carrier mobilities, low effective mass, controllable band gap. The majority issues of this dissertation focused on the high-quality growth of the InxGa1-xSb epitaxial layer on GaAs substrates under the interfacial misfit dislocation (IMF) growth mode by metalorganic chemical vapor deposition (MOCVD) method. The effect of ex-situ rapid thermal annealing (RTA) process on the crystal quality of the InGaSb epilayers was investigated at various heating temperatures (TA). We showed that the InGaSb epilayer quality was significantly improved at a TA of around 550 oC, attributed to the annihilation of the threading dislocations and the improvement of the uniformity of 90 o IMF array under a suitable temperature of 550 oC during RTA process. With the aim to integrate InGaSb epilayer on Si substrate through low-/high-temperature (LT/HT)-GaAs buffer layer technique, the study had also preliminary demonstrated optimized growth condition of the LT-GaAs buffer layer on exactly zero offcut Si substrate, which is the important issue to obtain a high-quality HT-GaAs epilayer with anti-phase domain boundary free. The results provide important information for future MOCVD growth technique and single channel InGaSb-based CMOS device applications.

參考文獻


References
[1] Z. Yuan, “Antimonide-Based III-V CMOS Technology,” no. August, p. 143, 2013.
[2] C. Liu, Y. Li, and Y. Zeng, “Progress in Antimonide Based III-V Compound Semiconductors and Devices,” Engineering, vol. 02, no. 08, pp. 617–624, 2010.
[3] S.M.Sze, K. K. N. (1995), “Physics of Semiconductor Devices Physics of Semiconductor Devices,” America Vol. 10, pp. 739–751.
[4] S. H. Huynh, M. T. H. Ha, H. B. Do, Q. H. Luc, H. W. Yu, and E. Y. Chang, “Impact of interfacial misfit dislocation growth mode on highly lattice-mismatched InxGa1-xSb epilayer grown on GaAs substrate by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 109, no. 10, pp. 0–4, 2016.

延伸閱讀