透過您的圖書館登入
IP:3.148.104.215
  • 學位論文

分子束磊晶成長矽摻雜氮化鎵薄膜之特性分析

Growth and characterization of Si doped GaN thin film grown by Molecular Beam Epitaxy

指導教授 : 周武清
本文將於2024/07/27開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本論文使用分子束磊晶成長矽摻雜氮化鎵薄膜。研究改變不同長晶參數對薄膜的表面形貌的影響。再利用控制不同矽材料源溫度,以改變矽原子的摻雜濃度,並對其電特性、光學特性以及表面形貌作分析。   在矽摻雜氮化鎵薄膜研究中,以矽材料源溫度為1140℃時具有最平滑的表面形貌。而在溫度1150℃時有最高的矽原子摻雜濃度,此時表面出現矽金屬的析出,因此得知其為由分子束磊晶成長此結構的摻雜極限。此外,我們可以觀察到光激螢光譜譜峰一開始呈現隨著矽參雜濃度增加而紅移的現象,此現象歸諸因矽參雜而引起的晶格壓縮應變。當矽參雜濃度增加到臨界濃度1019cm-3時,光激螢光譜譜峰開始出現藍移現象,此現象歸因於過多的參雜使得電子填到導電帶以上。

並列摘要


In this thesis, Si doped GaN thin films were grown by molecular beam epitaxy (MBE). The effect of growth parameters on the surface morphology was studied. The Si doping concentration was controlled by varying the efficient cell temperature of Si. Effect of the Si doping concentration on the electrical properties, optical properties and surface morphology were investigated. For the Si doped GaN thin films, the best surface morphology is obtained when the silicon cell temperature is 1140 °C. The highest doping concentration is achieved at the cell temperature of 1150 °C. However, precipitation of silicon on the sample surface was observed. It could be the solubility limit of Si dopants in GaN of this structure grown by MBE. In addition, in the optical measurement, we can observe the existence of a critical doping concentration 1019cm-3. The photoluminescence (PL) peak energy initially red-shifts with the increasing doping concentration and then blue-shifts when the doping concentration reaches the critical value. The initial redshift could be attributed to the increasing compressive strain with Si doping. The following blue-shift as the doping concentration exceeding 1019cm-3 could be due to the band filling effect.

並列關鍵字

MBE Si doped GaN

參考文獻


1 R. Juza, a. H. H. Über die kristallstrukturen von Cu3N, GaN und InN metallamide and metallnitride”, Z. Anorg. Allg. Chem.,239(3), 282-287 (1938).
2 H. P. Maruska & J. J. Tietjen. The preparation and properties of vapor‐deposited single‐crystal‐line GaN. Applied Physics Letters 15, 327 (1969).
3 J. KARPINSKI, S. POROWSKI & S. MIOTKOWSKA. HIGH PRESSURE VAPOR GROWTH OF GaN. Journal of Crystal Growth 56, 77-82 (1982).
4 S. Yoshida, S. Misawa & S. Gonda. Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates. Applied Physics Letters 42, 427-429, doi:10.1063/1.93952 (1983).
5 H Amano, N. S., I Akasaki, Y Toyoda,. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Applied Physics Letters 29, L205 (1986).

延伸閱讀