透過您的圖書館登入
IP:3.135.190.101
  • 學位論文

利用螢光相關光譜與拉曼光譜技術探討活性氧化物質對脂質膜流動性與結構之影響

Structure-Fluidity Interplay of Model Membranes - A Raman and Fluorescence Correlation Spectroscopy Study

指導教授 : 廖奕翰

摘要


脂質為細胞膜以及細胞內胞器膜的主要成分。細胞膜流動性是脂質膜的重要特徵,維持適當的流動性對脂質膜正常功能十分重要。細胞內粒線體的電子傳遞鏈以及其他反應會產生各種活性氧化物質 (reactive oxygen species, ROS),例如超氧自由基 (superoxide)、氫氧自由基 (hydroxyl radical) 和過氧化氫 (hydrogen peroxide) 等。這些活性氧化物質容易和生物分子,例如脂質、DNA或是蛋白質分子產生反應,改變其功能。由於脂質膜上含有不飽和脂質,因此容易受到氧化物質的影響造成脂質過氧化,脂質被氧化之後除可能造成結構上的改變外,也會影響脂質膜的正常流動性,造成細胞傷害。過去文獻上較少系統性探討脂質過氧化後脂質膜結構變化與脂質膜流動性改變之間的關係。在本研究中,我利用成分單純的脂質體 (liposome) 作為研究細胞脂質膜的模型系統,並利用螢光相關光譜 (fluorescence correlation spectroscopy, FCS) 與拉曼光譜 (Raman spectroscopy) 技術觀察在活性氧化物質的影響之下,脂質受到氧化之後其結構與流動性變化之間的關係。我也分別探討不同的抗氧化物質以及不同膽固醇比例對於脂質過氧化後的流動性與結構之影響。螢光相關光譜實驗結果顯示,加入過氧化氫對脂質體膜流動性沒有影響,而氫氧自由基則會造成脂質膜流動性顯著增快;拉曼光譜則顯示氫氧自由基對脂質雙鍵和單鍵都有破壞,而過氧化氫對脂質膜沒有明顯的結構破壞。以上結果可以解釋為氫氧自由基對於脂質過氧化造成碳鏈變短,導致脂質膜流動性的增快。我也探討加入了維他命C和維他命E兩種抗氧化劑的影響,結果發現兩者對於氫氧自由基造成的脂質體膜流動性增快與脂質結構破壞均有明顯抑制效果。最後,我探討不同比例膽固醇對於脂質過氧化後膜流動性與結構改變的影響。我發現膽固醇的比例越高,對於氫氧自由基造成脂質膜流動性增快的現象有抑制的趨勢,同時對於脂質雙鍵被破壞也有保護作用。較特別的是對含高比例膽固醇的脂質體加入氫氧自由基後,有造成脂質雙鍵的破壞但是脂質膜流動性並未變快,我也提出一個反應機制解釋以上現象。我的研究成果展現了應用螢光相關光譜與拉曼技術探討脂質膜過氧化之後流動性與結構改變之間的關係。

並列摘要


The membrane of biological cells or intra-cellular organelles plays an important role in maintaining cellular physiological functions. For example, the lateral fluidity of membranes is essential to regulate cellular activities occurring on membranes such as enzymatic reactions, cell-cell communication, and endocytosis. Unsaturated lipids, one of the main components of biological membranes, are susceptible to the attack of reactive oxygen species (ROS). The oxidation of lipids can lead to structural derangement of membranes, which may eventually compromise the membrane fluidity. Herein, we employ fluorescence correlation spectroscopy (FCS) and Raman spectroscopy to systematically characterize the membrane fluidity and lipid structures under the treatment of ROS, respectively. We show that hydrogen peroxide does not either change the membrane fluidity or modify the lipid structure. In contrast, hydroxyl radical induces a significant increase in membrane fluidity. This observation is rationalized with the diminished –CH2 and C=C moieties in lipids. We also show that vitamin C and vitamin E can protect membranes by preventing lipid peroxidation induced fluidity change. Most remarkably, a high percentage of cholesterol contents in membranes can effectively inhibit the attack of ROS to membranes. All the above observation can be accounted with the result of Raman on membrane. Our study demonstrates a correlative approach using FCS and Raman spectroscopy to address the structure-fluidity interplay of membranes, providing new insight to the modified membrane fluidity induced by ROS attack.

參考文獻


1. Oghalai, J.S., Zhao, H.-B., Kutz, J.W. & Brownell, W.E. Voltage- and tension-dependent lipid mobility in the outer hair cell plasma membrane. Science 287, 658-661 (2000).
3. Ishitsuka, Y., Pham, D.S., Waring, A.J., Lehrer, R.I. & Lee, K.Y.C. Insertion selectivity of antimicrobial peptide protegrin-1 into lipid monolayers: Effect of head group electrostatics and tail group packing. Biochimica Et Biophysica Acta-Biomembranes 1758, 1450-1460 (2006).
4. Garcia-Saez, A.J. & Schwille, P. Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions. Methods (2008).
6. Vereb, G. et al. Dynamic, yet structured: The cell membrane three decades after the Singer-Nicolson model. Proceedings of the National Academy of Sciences of the United States of America 100, 8053-8058 (2003).
7. Marguet, D., Lenne, P.F., Rigneault, H. & He, H.T. Dynamics in the plasma membrane: how to combine fluidity and order. Embo Journal 25, 3446-3457 (2006).

延伸閱讀