透過您的圖書館登入
IP:3.142.173.227
  • 學位論文

車輛軌跡跟隨及抑制車輛打滑之差動式輪胎力矩控制系統

Trajectory Following and Anti-skidding Vehicle Control Systems Using Differential Wheel Torques

指導教授 : 陳宗麟

摘要


在本篇論文中,我們提出了一套車輛運動控制系統,此控制系統是藉由控制車輛四輪個別的輪胎力矩,進而產生橫擺轉動力矩與調整車輛縱向速度,希望能達到使車輛自動跟隨事先設定的參考路徑行駛與抑制車輛打滑的目的,以確保駕駛者的行駛安全。此外我們推導出車輛在無打滑時的車身側滑角(vehicle sideslip angle)範圍,當作車輛是否產生打滑的依據,並且確保在車輛控制過程中,車身側滑角在此安全範圍內。 為了探討實際車輛行駛的動態行為,我們建立了一個具有20個系統階數的“完整車輛模型”(full car model),用來模擬實際車輛動態,但如此複雜的數學模型對於控制器的設計並不容易,因此我們以簡化的模型為基礎進行控制器設計,使用對抗干擾優良的順滑模態控制方法(sliding mode control),使控制器具有良好的穩健性(robustness) ,再採用完整車輛模型進行控制法則驗證。 本文利用電腦模擬軟體MATLAB來驗證所提出的車輛運動控制系統,並且依據模擬結果作詳細的分析與討論。由模擬結果得知,我們所提出的控制方法可以使車輛自動跟隨參考路徑行駛,使側向路徑誤差控制在1.21 m內,並且可以將最大車身側滑角從5.20 deg控制至1.13 deg之內,使車身側滑角在無打滑的安全範圍內變化,確保車輛無打滑的情況發生。

關鍵字

車輛 順滑模態 控制 軌跡跟隨 抑制打滑

並列摘要


In this thesis, we present a differential wheel torques vehicle control system. The differential wheel torques would generate a yaw moment and adjust the vehicle longitudinal speed, and thus the vehicle can follow the pre-determined trajectory without skidding. Moreover, we studied the range of the vehicle sideslip angle in the non-skid situation and use this as a criterion for the anti-skidding controls. The anti-skidding controls enhance the controllability of the vehicle trajectory controls and thus improve the robustness of the proposed trajectory control systems. In order to simulate the vehicle dynamics under various driving conditions, a “full-car model” with 20 system states is constructed. However, a full-car model is too complicate for the controller design. Thus, a simplified vehicle model, which neglects pitch motions from the full-car model, is used for the controller design. The controller is developed from the “sliding mode control” techniques so that it has the robustness to cope with unmodelled dynamics. Simulation results indicate that the proposed control systems can actuate a vehicle to follow the pre-determined trajectory, and the lateral position error is within 1.21 m under various driving conditions. The vehicle sideslip angle can be minimized to 1.13 degree which was 5.20 degrees without controls.

參考文獻


[2] Chen, B.C. and Peng H., “Differential-Braking-Based Rollover Prevention for Sport Utility Vehicles with Human-in-the-loop Evaluations,” Vehicle System Dynamics 2001, Vol. 36, No. 4-5, pp. 359-389.
[3] P.Gaspar, Z.Szabo, and J. Bokor, “Brake control combind with prediction to prevent the rollover vehicles,” IFAC World Congress. Praha. 2005.
[4] Chenming Zhao, Weidong Xiang, Paul Richardson, “Vehicle Lateral Control and Yaw Stability Control through Differential Braking,” IEEE ISIE, July 9-12, 2006.
[5] Christopher R. Carlson and J. Christian Gerdes, “Optimal rollover prevention with steer by wire and dIifferential braking,” ASME international Mechanical Engineering Congress and Exposition November 16-21, 2003, Washington, D.C. USA.
[6] Pongsathorn Raksincharoensak, Masao Nagai and Motoki Shino, “Lane keeping control strategy with direct yaw moment control input by considering dynamics of electric vehicle,” Vehicle System Dynamics Vol.44, Supplement, 2006, 192-201.

延伸閱讀