透過您的圖書館登入
IP:3.16.147.124
  • 學位論文

應用於調頻連續波車用防撞警示雷達之角度偵測演算法

A New Direction-of-Arrival Estimation Algorithm for FMCW Vehicle Collision Warning Radar

指導教授 : 鍾世忠

摘要


本篇論文提出了一個應用於車用防撞警示雷達的角度偵測演算法。為了達到高天線增益,利用兩個微帶天線饋入透鏡天線,當作傳輸與接受的天線。根據這樣的天線架構,新提出的演算法可以判斷目標信號的角度。這個演算法可以改善因為單脈衝天線訊號大小比值的線性度不佳所造成角度解析度不好的問題。新演算法另一個優勢就是可以提高偵測區域內可偵測目標物的數目。此演算搭配多天線的設計,利用數位波束合成的概念產生多個虛擬的輻射場型,然後利用這些場型合成類似單脈衝天線訊號大小的比值,偵測位於200公尺內,涵蓋前方 8∘或是4∘範圍內的目標物。 最後,用模擬的方式驗證新演算法的可行性。模擬環境也會考慮許多不同的情形以貼近現實真正的情況。同時,目標物的特性:距離、速度還有角度的資訊會被結合在一起,進一步準確地掌握目標物的動態。

並列摘要


In this thesis, a novel Direction of Arrival (DOA) estimation algorithm for vehicle collision warning radar system has been developed. In order to achieve high gain, Lens antenna fed with two microstrip patch antennas will be used as transmitting and receiving antenna. Base on this structure, the new estimation algorithm can extract where the targets’ signal come from. This algorithm can improve poor angle resolution due to non-linearity of conventional monopuls power ratio. Another advantage of new methodology is enhancing the number of targets of interest inside the detection region. New algorithm will cooperate with multiple-antenna design and use the concept of digital beam forming to produce more virtual radiation patterns. Then use these patterns to create quasi-monopulse ratio to detect the targets of interest inside the detection region up to 200 meters with an angle of  8∘or  4∘. In the end, the simulation will be illustrated to verify the feasibility of the algorithm. Many situations are taken into consideration to ensure the simulation environment close to the real case. At the same time, target distance, speed, angle called target characteristics will be combined together to further describe target motion.

並列關鍵字

FMCW DOA

參考文獻


[1] S. Tokoro, “Automotive application systems of millimeter-wave radar,” in IEEE Proc. Intelligent Vehicle Symp., 1996, pp. 260-265.
[2] H. H. Meinel, “Automotive radar and related traffic applications of millimeter waves,” in 1997 Topical Symp. on Millimeter Waves, 1998, pp. 151-154.
[5] D. Richardson, “An FMCW radar sensor for collision avoidance,” in IEEE Conf. Intelligent Transportation System, 1997, pp. 427-432.
[6] A.-J. Ramzi, “ACC radar sensor technology, test requirements, and test solutions,” IEEE Trans. Intell. Transport. Syst., vol. 4, no. 3, pp. 115-122, Sep. 2003.
[7] D. Bonefacic and D. J. Jancula, “Laboratory model of a monopulse radar tracking system,” in IEEE Int. Symp. Multimedia Signal Processing and Communication, 2006, pp. 227-230.

延伸閱讀