透過您的圖書館登入
IP:3.138.113.188
  • 學位論文

面內撓曲式拱形阻尼器之材料力學理論與試驗

Mechanics of Material and Testing of in-Plane Arched Damper

指導教授 : 王彥博

摘要


本研究提出門形與拱形阻尼器等面內撓曲式阻尼器,目的在發展可增進材料利用效率之結構抗震消能裝置。本文根據材料力學之直梁與曲梁理論發展阻尼器之線彈性分析理論,並進行一系列足尺元件測試,結果顯示初始勁度之理論估算值與元件試驗結果相當吻合,其中以門形阻尼器的精度較佳,拱形阻尼器因幾何條件無可避免產生剪力作用導致剪切變形而違反材料力學之基本假設,因此誤差較大。元件測試所得之遲滯消能迴圈相當飽滿且穩定,與ANSYS分析結果也有很好的相關性。不管是韌性抑或極限強度,拱形阻尼器皆優於門形阻尼器,且因更易降伏可及早發揮遲滯消能作用,極具發展成為建築抗震裝置之潛力。拱形阻尼器之振動台耐震性能測試結果證明其具備相當優異之減震效能,加裝阻尼器後,結構各模態之等效阻尼比隨地震強度之增加而提升,符合非線性阻尼器之特性。

並列摘要


This study proposes two types of displacement-dependent metallic yielding dampers, namely the in-Plane Flexural Damper (i-PFD) and in-Plane Arched Damper (i-PAD), to be used as seismic energy-dissipative devices with improved efficiency on material utilization. Linear theories of the proposed dampers are developed based on mechanics of materials for straight or curved beams. Initial stiffness of the dampers predicted using the linear theory agrees very well with those obtained from the component tests. And the prediction is more accurate for i-PFD than i-PAD. The error is due to violation of the basic hypotheses of mechanics of materials with the introduction of shear deformation under inevitable shear forces produced in a curved geometry. Being stable in repeated cycles, the hysteresis obtained from the component tests exhibit characteristics of fullness and show good correlations with the ANSYS analysis. The i-PAD is experimentally proved superior not only in ductility but also in ultimate strength. Allowed to yield and dissipate energy in an early stage, the i-PAD turns out to be a potentially better device for building applications. Excellent performance of the i-PAD for seismic protection of structures has been achieved via the shaking table tests. With the dampers implemented, the effective modal damping ratios of the structure increase with the earthquake intensity.

參考文獻


4. 張簡嘉賞(2009),「基於挫屈及摩擦機制之位移型抗震阻尼器的試驗研究」,國立交通大學土木工程學系,博士論文。
3. Sabelli R., Mahin S., Chang C., (2003), “ Seismic demands on steel braced frame buildings with buckling-restrained braces”. Engineering Structures; 25, pp. 655–666.
5. Tsai K.C., Chen H.W., Hong C.P., Su Y.F., (1993), “Design of Steel Triangular Plate Energy Absorbers for Seismic-Resistant Construction”. Earthquake Spectra; 9(3), pp. 505-528.
8. Chan, W.K. and Albermani, F. (2008), “Experimental Study of Steel Slit Damper for Passive Energy Dissipation” Engineering Structures, 30, pp. 1058-1066.
9. Guan, Z., Li, J. and Xu, Y. (2010), “Performance Test of Energy Dissipation Bearing and Its Application in Seismic Control of a Long-Span Bridge” Journal of Bridge Engineering, ASCE, 15, pp. 622-630.

被引用紀錄


梁誠偉(2014)。面內撓曲式拱型阻尼器之彈性力學理論與試驗〔碩士論文,國立交通大學〕。華藝線上圖書館。https://doi.org/10.6842/NCTU.2014.00605
黃詩喬(2016)。曲梁在彎-剪耦合條件下之非彈性應力分析〔碩士論文,國立交通大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0030-0803201714430087
武亞威(2016)。面內撓曲式阻尼器之性能分析與比較〔碩士論文,國立交通大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0030-0803201714412367

延伸閱讀