透過您的圖書館登入
IP:3.142.173.227
  • 學位論文

黎曼曲面與Weierstrassian橢圓函數的理論及其對Korteweg-deVries方程的應用

The Theory of Riemann Surfaces and the Weierstrass Elliptic Functions with Application to the Korteweg-deVries Equation

指導教授 : 李榮耀

摘要


Korteweg-deVries方程式是個非線性偏微分方程,而KdV方程式如下: u_t(x,t)-6*u(x,t)u_x(x,t)+u_xxx(x,t)=0,t>0,-∞≤x≤∞ 對於特殊解,我們可以把偏微分方程式轉變成微分方程式,再利用變數變換的方法,我們可以將原本的方程式變成以下的形式: u_θ^2(θ)=2*u^3(θ)+cu^2(θ)+2*A*u(θ)+B 如果我們要求解出函數u(θ),基本上這是一個要解一個積分函數,而此積分函數是具有平方根的形式,以及根號內是一個三次多項式。 對於平方根在複數平面上它是一個多值函數,我們在複數平面上建立黎曼曲面,並且藉由適當的代數建構,使得平方根在黎曼曲面上是一個單值函數。 而對於根號內的三次多項式,我們介紹Weierstrassian橢圓函數的古典理論,並且利用它去求u_θ(θ)=√(2*u^3(θ)+cu^2(θ)+2*A*u(θ)+B) 的解,並分析相關的性質。

並列摘要


The Korteweg-deVries equation is nonlinear partial differential equations, and the KdV equation is as follows: u_t(x,t)-6*u(x,t)u_x(x,t)+u_xxx(x,t)=0,t>0,-∞≤x≤∞ For traveling solutions, we can transform partial differential equations into differential equation, and the KdV equation becomes the following form: u_θ^2(θ)=2*u^3(θ)+cu^2(θ)+2*A*u(θ)+B To solve u(θ) we transfer this ode into integral equation namely, The inverse problem where the integral involves square root(a multi-valued function). We develop Riemann surfaces with proper algebraic structure to make the function √ to be single-valued. Then we introduce the classical theory of Weierstrassian elliptic functions, to solve the solution of u_θ(θ)=√(2*u^3(θ)+cu^2(θ)+2*A*u(θ)+B) .

參考文獻


[1] Paul Blanchard, Robert L. Devaney, Glen R. Hall and Jong-Eao Lee, Differential Equations: A Contemporary Approach, Thomson, 2007.
[5] Chi-Jer Yu , The Bifurcation Analysis of the N-th Order, Nonlinear Ordinary Differential Equations, NCTU Master thesis , Taiwan, 1993.
[6] Chen, Ding-San , Topics on Linear Parabolic Partial Differential Equations, NCTU Master thesis , Taiwan, 2008.
[7] Lee, Jong-Eao, The Theory and Applications of the Elliptic Functions, NCTU Master thesis , Taiwan, 2009.
[2] George Springer (1981). Introduction to Riemann Surfaces. New York: Chelsea.

延伸閱讀