透過您的圖書館登入
IP:216.73.216.78
  • 學位論文

磁場頻率對旋轉磁性液滴及擺動磁性粒子串之影響

Influence of Field Frequency to Rotating Ferrofluid Drops and Oscillating Micro–bead chains

指導教授 : 陳慶耀

摘要


本文以實驗方法研究磁性流體液滴在大氣環境下,置於一不可互溶流體中受到旋轉磁場的作用下之運動情形。實驗主要的目的是研究不同旋轉磁場頻率與初始液滴大小對液滴拉伸長度的影響,並與磁性粒子串在不同擺動磁場頻率中,對其擺動振幅的影響做比較,再以無因次參數〖Bo〗_m、f_r來做一系統性的整理。實驗架構是由磁性液滴置於不可互溶非磁性溶液中,開啟平面旋轉磁場使磁性液滴產生拉伸變化,液滴外觀由初始尚未開啟磁場所保持的圓形,轉變成為磁場開啟後之橢圓形,並沿磁場方向作旋轉運動。本文使用多種液滴初始直徑大小以及不同旋轉磁場頻率,來進行分析,研究結果發現,液滴拉伸長度會隨磁場頻率增加而變短,並隨初始直徑大小增加而變長。而磁性粒子串在一外加擺動磁場中,其最大擺動振幅則會隨擺動頻率的增加而變小。

並列摘要


We experimentally investigate the motion of a ferrofluid drop in a rotating magnetic field. Magnetized and driven by the external field, the drop would be stretched to the shape of ellipsoid along the orientation of the field. It is observed that the stretched length of drop decreased when we increase the frequency of the external field. And we use two dimensionless parameters to know the influence of field frequency clearly. Besides, compare these results to the micro-bead chain which subjected to an oscillating field. The amplitude of the chains decreased when we increase the frequency of the oscillating field.

參考文獻


[20]林合慶,「擺動磁場下磁性粒子串之不穩定現象實驗研究」,國立交通大學,博士論文,民國104年。
[2] Rabinow, J., “The Magnetic Fluid Clutch’’, Electric Engineering Vol. 67, pp.417-431, (1948).
[3] M. D. Cowley and R. E. Rosensweig, “The interfacial stability of a ferromagnetic fluid”, J. Fluid Mech., 30, 671(1967).
[5] R. Richter and I. V. Barashenkov‚ “Two-dimensional solitons on the surface of magnetic fluids”, Phys.Rev.Lett.‚94‚184503‚ (2005).
[6] C. Gollwitzer, G. Matthies, R. Rither, I. Rehberg and L. Tobiska, “Surface topography of a magnetic fluid-a quantitative comparison between experiment and numerical simulation”, J.Fluid Mech., 571,455-474, (2007).

延伸閱讀