透過您的圖書館登入
IP:18.191.147.190
  • 學位論文

利用氣相傳輸沉積法製備二維Sb2Te3硫族合金奈米片之研究

Preparation of Two-dimensional Sb2Te3 Chalcogenide Nanosheets by Vapor Transport Deposition

指導教授 : 謝宗雍
本文將於2025/03/09開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


實驗利用氣相傳輸沉積法(Vapor Transport Deposition,VTD)成長三碲化二銻(Antimony Telluride,Sb2Te3)二維奈米片(Two-dimensional Nanosheets),藉由調整爐管之溫度、壓力、持溫時間、載流氣體流量、升溫速率等變因,並搭配掃描式電子顯微鏡、能量散佈分析儀、原子力顯微鏡、拉曼光譜及X光繞射儀之分析確認基板溫度350C、爐管壓力2 torr、持溫7分鐘、95% Ar+5% H2載流氣體流量30 sccm、升溫速率6C/min之條件下可長成均勻分布、厚度8 nm、總層數約8層且生長方向沿(001)晶面成長之Sb2Te3奈米片。 完成Sb2Te3奈米片的製作後,以載有鈦電極基板進行基板轉移,並以電子束顯影系統進行電極與奈米片之間的連通,而後進行電性量測。I-V量測發現兩種不同的特性曲線,推測原因為量測的Sb2Te3奈米片會因重量分布的改變與電極的接觸面積。其中具有高、低電阻態的I-V曲線具有雙極電阻式記憶體的應用潛力;C-V量測的部分,因所測出之曲線皆為一直線,表示Sb2Te3奈米片沒有承載電荷的能力。

並列摘要


This study synthesizes the two-dimensional antimony telluride (Sb2Te3) nanosheets by vapor transport deposition (VTD) method. The samples grew via the adjustment of VTD parameters including temperature and pressure of tube furnace, soaking time duration and the flow rate of the vehicle gas. Afterward, scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy, Raman spectroscopy and x-ray diffraction were adopted to analyze the microstructure and composition of nanosheet samples. Analytical results indicated that the temperature of 350C, pressure of 2 torr, soaking time of 7 min and the 95% Ar+5% H2 vehicle gas flow rate of 30 sccm are the optimum condition to grow uniformly distributed Sb2Te3 nanosheet on Si substrate with the height of 8 nm (equivalent to eight Sb2Te3 layers). The e-bean lithography system was employed to connect the Sb2Te3 nanosheets with Ti electrodes on Si substrate so as to measure the electrical properties of Sb2Te3 nanosheets. The current-voltage (I-V) measurements found three different kinds of I-V cures. The distinction might caused by the thickness change of Sb2Te3 nanosheets which, in turn causes the variation of carrier concentrations. Furthermore, the I-V characteristics of Sb2Te3 nanosheets revealed the possible applications to bipolar resistance random access memory. As to the C-V measurrment, the results indciated the Sb2Te3 nanosheets have no charge storage capability.

參考文獻


參考文獻
[1] K.S Nonoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science., 306(2004), p.666-669.
[2] G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajemdran, S. Raoux and R.S. Shenoy, “Phase Change Memory Technology”, J. Vac. Sci. Technol., 28 (2010), p.223-262.
[3] R.B. Jacobs-Gedrim, M.T. Murphy, F. Yang, N. Jain, M. Shanmugam, E.S. Song, Y. Kandel, P. Hesamaddin, H. Yu, M.P. Anantram, D.B. Janes and B. Yu, “Reversible Phase-change Behavior in Two-dimensional Antimony Telluride (Sb2Te3) Nanosheets”, Appl. Phys. Lett., 112(2018), 133101.
[4] L. van Pieterson, M. van Schijndel, J.C.N. Rijpers and M. Kaiser, “Te-free, Sb-based Phase-change Materials for High-speed Rewritable Optical Recording”, Appl. Phys. Lett., 83(2003), p.1373-1375.

延伸閱讀