透過您的圖書館登入
IP:18.216.37.123
  • 學位論文

整合行波介電電泳和介電濕潤於快速細胞分選

Joint Traveling Wave Dielectrophoretic and EWOD for Fast Cell Sorting

指導教授 : 李鎮宜

摘要


微流體芯片實驗室(lab-on-a-chip)設備已被證明是此應用程序的有前途的平台,這歸因於其許多優點,例如體積小,成本低,樣品和試劑消耗低,可移植性以及快速分析時間。因此,在本篇論文中,我們提出了一款整合行波介電電泳和介電濕潤於快速細胞分選之系統可程式化生醫晶片,這種新穎的整合型生醫晶片解決許多傳統上的發展瓶頸,形成功能更強大的晶片,其中這個系統包含了以下三種功能,包含微流體驅動、細胞分選以及液珠位置感測。通過電極設計,我們可以在行和列方向上操作細胞分選,以便細胞可以在更多程度上的分類,然後使用電潤濕(Electrowetting)進行液滴切割、移動與混和。這樣一來,我們可以通過多次實驗分離不同的細胞,且因本系統為無需透過免疫標記來標記特定的靶細胞以做分離,除了能夠快速完成癌症檢測外,分離出來的癌細胞也能夠提供給相關的研究單位做更進一步的研究。我們使用台積電0.18μm CMOS 製程。從實驗結果可看出細胞確實可以如其特性做相對應的移動。與傳統生醫晶片相比,本文所提出之系統可程式化生醫晶片能實現輕巧方便、操作簡單、使用者可程式化與擴充性,也證實行波介電泳(traveling wave dielectrophoretic)的確可以運用於細胞分選中。

並列摘要


Lab-on-a-chip equipment has proven to be a promising platform for this application, due to its many advantages, such as small size, low cost, low sample and reagent consumption, and Portability and fast analysis time. Therefore, in this paper, we propose a programmable biomedical chip that integrates traveling wave dielectrophoresis and electrowetting-on-dielectric in rapid cell sorting.This novel FPLOC resolves bottleneck of traditional development. to form more powerful chip. This system contains the following three key functions, including droplet actuation, cell sorting, and droplet location sensing. Through electrode design, we can operate cell sorting in the row and column directions, so that the cells can be sorted to a greater extent, and then use Electrowetting to perform droplet cutting, movement, and mixing. In this way, we can separate different cells through multiple experiments, and because this design is label-free system, in addition to the rapid completion of cancer detection, the target cancer cells can also be provided to relevant research units for further research. We use TSMC 0.18μm CMOS process. From the experimental results, it can be seen that the cells can indeed move according to their characteristics. Compared with the traditional biomedical chip, the system-programmable biomedical chip proposed in this paper can achieve lightness and convenience, simple operation, user programmability and expandability. It also confirms that traveling wave dielectrophoretic can indeed be used in cell sorting.

參考文獻


[1] N. Manaresi, A. Romani, G. Medoro, L. Altomare, A. Leonardi, M. Tartagni, and R. Guerrieri,“A cmos chip for individual cell manipulation and detection,” IEEE Journal of Solid-State Circuits, vol. 38, no. 12, pp. 2297–2305, 2003.
[2] E. Choi, B. Kim, and J. Park, “High-throughput microparticle separation using gradient traveling wave dielectrophoresis,” Journal of Micromechanics and Microengineering, vol. 19, no. 12, p. 125014, 2009.
[3] K. Y.-T. Lai, M.-F. Shiu, Y.-W. Lu, Y. Ho, Y.-C. Kao, Y.-T. Yang, G. Wang, K.-M. Liu, H.-C. Chang, and C.-Y. Lee, “A field-programmable lab-on-a-chip with built-in self-test circuit and low-power sensor-fusion solution in 0.35 μm standard cmos process,” in 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, 2015, pp. 1–4.
[4] D. F. Hayes, M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, M. C. Miller, J. Matera, W. J. Allard, G. V. Doyle, and L. W. Terstappen, “Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival,” Clinical Cancer Research, vol. 12, no. 14, pp. 4218–4224, 2006.
[5] Y. Zhao, U.-C. Yi, and S. K. Cho, “Microparticle concentration and separation by travelingwave dielectrophoresis (twdep) for digital microfluidics,” Journal of Microelectromechanical Systems, vol. 16, no. 6, pp. 1472–1481, 2007.

延伸閱讀