透過您的圖書館登入
IP:3.145.161.228
  • 學位論文

應用於植入性生醫裝置中可重構式且具動態開關延遲補償技術無線電力傳輸接收器

A 13.56MHz Reconfigurable Wireless Power Receiver with Adaptive Switching Delay Compensation for Implantable Medical Devices

指導教授 : 陳柏宏

摘要


近年來,許多植入式生醫元件被開發來治療人體的疾病。然而目前的電池製作技術無法達到體積小且容量足夠大的電池,來滿足生醫元件長時間的應用。因此,每隔一段時間當電池能量耗盡之後,病人就必須透過開刀來更換電池。為了使病人免於頻繁的手術以及受術必須承擔的風險,無線電力傳輸被視為解決此電池更換問題的關鍵技術。為了實現高效率的無線電力傳輸系統,本論文提出一種結合整流與穩壓功能的主動式整流器。透過數位脈波寬度調變技術使用,可以產生穩壓的直流輸出電壓。藉由改良傳統的主動式整流器架構,此整流器能產生輸出電壓在1.8 V,供給植入式生醫電子產品充電使用。除此之外,由於此無線電力傳輸系統的操作頻率為較高的頻率13.56 MHz,為了使功率電晶體的開關延遲時間將嚴重影響整流器的傳輸效率,具動態開關延遲補償技術也被開發來驅動功率電晶體。透過動動態開關延遲補償,此技術可以自動的偵測開關延遲時間並校準所需的比較器輸入偏移電壓以及關閉延遲時間,以達到再不同的輸入震幅範圍都能達到高效率,且能降低因製程變異所產生的影響。本論文所提出的穩壓型整流器是利用台積電0.18um的製程製作,其後模擬所能達到的最高功率轉換效率為88.8%,輸出功率為36mW。能容許的輸入交流振幅的範圍為1V~3.3V,此範圍是由功率電晶體導通時所產生的壓降與電晶體的崩潰電壓所決定。

並列摘要


In this thesis, a 13.56MHz regulated rectifier is proposed which consists of rectification and regulation functions in one converter. By adopting the digital pulse width modulation (DPWM) technology to generate a regulated DC output voltage. Since the wireless power transmission system for the higher frequency 13.56 MHz, the switching delay of the power transistor will seriously affect the transmission efficiency of the rectifier. Thus, an adaptive switch delay compensation techniques (ADCT) have also been developed. To achieve high efficiency in different input amplitude range, also can reduce the effects of process variation. ADCT can compensate for both turn-on and turn-off delay by calibrate the comparator input offset voltage and the power MOS conduction time automatically to achieve maximum conversion power and minimize the reverse leakage current. Regulated rectifier proposed in this paper is fabricated in TSMC 0.18um process, followed by simulation can reach the highest power conversion efficiency was 88.8%, the output power is 36mW. Can tolerate a range of input AC amplitude is 1V ~ 3.3V.

參考文獻


[2] K. Van Schuylenbergh and R. Puers, Inductive Powering–Basic Theory and Application to Biomedical Systems. New York, USA: Springer, 2009
[3] H. Lee and M. Ghovanloo, "Fully integrated power efficient AC-to-DC converter design in inductively powered biomedical applications," Proc. of IEEE 2011 CICC, paper 8.7, 11.
[4] H. Lee and M. Ghovanloo, "An integrated power-efficient active rectifier with offset-controlled high speed comparators for inductively-powered applications", IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 8, pp. 1749-1760, 2011
[5] H.-M. Lee and M. Ghovanloo, "A high frequency active voltage doubler in standard CMOS using offset-controlled comparators for inductive power transmission", IEEE Trans. Biomed. Circuits Syst., vol. 7, pp. 213-224, 2013
[6] H. M. Lee and M. Ghovanloo, "An adaptive reconfigurable active voltage doubler/rectifier for extended-range inductive power transmission", IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 8, pp. 481-485, 2012

延伸閱讀