透過您的圖書館登入
IP:3.21.244.137
  • 學位論文

不同型式光纖與集光器搭配之效率測試

Test of the Efficiency of the Concentrator with Different Types of Optical Fiber

指導教授 : 吳俊諆
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


太陽集光器在太陽能應用佔有重要的地位,近年來它的應用朝向將光經由光纖傳導至室內再轉換成其他形式能量,這種方式有其彈性但其實用性尚待評估。因此本文探討使用拋物面碟式集光器搭配光纖,將集光器聚焦的光經由光纖傳輸到遠端的可行性。 光纖—集光器的主要兩個光學元件為光纖與反射鏡組(做為集光器),反射鏡組包含拋物面主反射鏡與平面二次反射鏡。目前光纖的光學特性和材料性質與集光器的特性在搭配時會有限制,特別是主反射鏡的直徑、曲率大小與光纖數值孔徑等參數,此外操作溫度亦會影響輸出功率,這些因素都會影響光纖的光傳輸效率。因此本文使用兩種反射鏡組搭配三種不同形式的單光纖(塑膠和石英)與兩種石英光纖束,光纖的長度可達150 cm。由量測與估算的光傳輸功率計算光傳輸效率。在單光纖形式中,有緩衝層石英光纖的傳輸效率最好,光纖傳輸長度為120 cm的光傳輸效率為77%-80%。而光纖束目前製作技術不理想,單光纖製作成光纖束後,光強度便會大幅下降。本文亦對石英光纖的輸出功率受溫度效應作探討,在低操作溫度範圍(25oC - 95oC),發現此溫度範圍內石英光纖輸出功率穩定。

並列摘要


Solar concentrator is an important device in the application of solar energy, and one of its applications is utilize the optical fiber to transport the concentrated light into the indoor for converting the solar energy to other form of energy. Such arrangement provides flexibility and yet its practical implementation remains to be investigated. Thus, this work is a feasibility study of transmitting the concentrated light from a concentrator through the optical fiber. Present arrangement of the fiber-concentrator consisted of a parabolic dish (the primary mirror) and a flat secondary mirror, and various forms of optical fiber (plastic and quartz) up to the length of 150 cm. There is some mismatch between the optical and material characteristics of fibers and the mirrors used in the concentrator, especially the diameter and the curvature of primary mirror, and the numerical aperture of the fiber. In addition, the operating temperature will affect the output power from the fiber. This study uses two types of primary mirror, three types of single fiber and two modes of quartz-fiber bundle. The transmitting efficiency is calculated from both the measured and predicted light power through the light path of the concentrator-fiber. In the case of single fiber, the quartz-fiber with the buffer layer has best efficiency; it’s efficient is 77-80% for a 120-cm length of transmitting length. Due to imperfect fabrication of the fiber bundle, the light intensity of the fiber bundle drop significantly compare with that of the single fiber. Finally, the measured light power was stable in the range of low operating temperature (25oC - 95oC).

參考文獻


Bak T., J. Nowotny, M. Rekas and C.C. Sorrell, Photoelectrochemical hydrogen generation from water using solar energy: Materials-related perspective, Int. J. Hydrogen Energy 27, pp.991-1022, 2002.
Bailey D. and E. Wright, Practical Fiber Optics, Elsevier, 2003.
Cariou J.M., J. Dugas and L. Martin, Transport of solar energy with optical fibers, Solar Energy 29(5), pp. 397-406, 1982.
Ciamberlini C., F. Francini, G. Longobardi, M. Piattelli and P. Sansoni, Solar system for exploitation of the whole collected energy, Optics and Lasers in Engineering 39, pp. 233–246, 2003.
Feuermann D. and J.M. Gordon, Solar fiber-optical mini-dishes: a new approach to the efficient collection of sunlight, Solar Energy 65(3), pp. 159–170, 1999.

被引用紀錄


劉瑞麟(2011)。追日聚光式太陽能光纖照明系統之研製〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2011.00159
黎倩如(2010)。太陽光集光與室內照明節能之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/CYCU.2010.00565
吳彥亞(2015)。應用自由曲面於太陽能電池集光模組之光學設計〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2015.00067
呂問星(2011)。以圓錐曲面設計之太陽能集光器〔碩士論文,崑山科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0025-2308201103432000

延伸閱讀