透過您的圖書館登入
IP:3.137.173.168
  • 學位論文

人工髖關節雙軸向動態磨耗試驗平台開發

Development of Dual-axial Dynamic Hip Joint Simulator

指導教授 : 鄔蜀威 林上智
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


全人工髖關節置換手術後發生植入物鬆脫現象,主要的可能原因有二: 一. 因磨耗而產生的磨屑,使周圍骨組織產生骨溶解等,造成固定失敗。 二. 因為應力遮蔽效應而造成骨質流失。 在人工髖關節的植入手術後,使得原本人體髖臼與股骨球頭之間接觸面積變小,單位面積上所承受的負荷相對提高,造成人工關節髖臼-球接觸面的磨損情形比起原本的人體髖關節更為嚴重,而人工髖關節中,髖臼-球之間的磨耗行為是造成鬆脫的一個相當重要的因素,為了降低人工髖關節在置換後的鬆脫情形,了解磨耗的行為過程進而設法改善磨耗情形,延長植入物使用的壽命,已成為現今骨科醫師與醫學工程人員的一個重大的研究方向。 本研究希望藉由簡化運動模式來製造Two-station的模擬磨耗機台。針對在生理解剖學上髖關節實際運動的情形,去設計開發一部人工髖關節的雙軸向磨耗模擬試驗平台。藉由此人工髖關節模擬磨耗試驗平台,將所得到磨耗結果,結合臨床上的磨耗數據,試圖接近人工髖關節的各種條件,例如荷重、角度,磨耗率等,實驗的結果更可以作為往後設計改進磨耗平台與人工髖關節抗磨耗材料選取之重要依據,有助於未來人工髖關節相關的研究與發展。

關鍵字

簡化運動 磨耗機 髖關節

並列摘要


There are two main factors causing loosening after total hip joint replacement. 1. The wear debris which causes osteoclasis will make implant fixation failed. 2. The osseous loss because of stress shielding. The hip joint replacement makes acetabular cup and femur head exposing area diminish, and makes the load on unit area higher. Wearing becomes more serious than original human hip joint’s wearing. However, the behavior of wearing is a quite important factor to prosthetic loosening. In order to reduce loosening after replacing of artificial hip join, understanding the behavior of wearing and try to improve implants have become a great direction of researching orthopedists and the direction of the researchers in biomedical engineering. This dissertation deal with using simplified motion cycles to design a two-station wear simulator. To develop a dual-axial dynamic hip joint wear simulator according to the motion of hip joint when exercising. Using the results of the wearing from the simulator, and combining with the clinical wearing data makes it close to various kinds of conditions of the artificial hip joint, such as the loading, angle, and wear rate etc. The results of the experiment can be regarded as the important basis of improving simulator and prosthetic design even more, and it also makes contribution to the research and development that the artificial hip joint is correlated with in the future.

並列關鍵字

two-station simplified motion simulator hip joint

參考文獻


[5] Paul, J. P. Force actions transmitted by joints in the human body, Proc. R. Soc. Lond. B, 1976, 192(1107), 163–172.
[8] V. Saikko, “A three-axis hip joint simulator for wear and friction studies on total hip prostheses.” Proc. Instn Mech. Engrs, Part H, Journal of Engineering in Medicine, 1996, 210(H3), 175–185
[9] V. Saikko and T Ahlroos, “Type of motion and lubricant in wear simulation of polyethylene acetabular cup” Proc. Instn Mech. Engrs, Part H, Journal of Engineering in Medicine 1999, 213,301-310
[10] C Liu, S M Green, N D Watkins, P J Gregg and A W McCaskie “A preliminary hip joint simulator study of the migration of a cemented femoral stem” Proc. Instn Mech. Engrs, Part H, Journal of Engineering in Medicine 2003, 217,127-135
[11] S L Smith, I C Burgess and A Unsworth “Evaluation of a hip joint simulator”, Proc. Instn Mech. Engrs, Part H, Journal of Engineering in Medicine 1999, 213,127-135

延伸閱讀