透過您的圖書館登入
IP:18.188.192.216
  • 學位論文

超音波噴墨器之分析與製作

Analysis and Fabrication of Ultrasonic Inkjet Ejector

指導教授 : 潘敏俊
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


不同於熱汽泡式以及壓電致動式的噴墨法,聲波噴墨為一新潁的噴墨列印技術。本研究於不同的超音波噴墨相關理論做分析探討,如壓電薄膜共振頻率理論、焦平面偏移理論以及最佳聲阻抗匹配層之分析。另外本研究建構一套設計介面來整合上述之分析結果以及透鏡尺寸之輸出。此外,本研究為了驗證超音波噴墨之可行性而設計出大型化之噴墨頭,參考設計頻率為1 MHz。於大型化的實驗結果中可以成功地在墨水表面清楚地觀察到聲波聚焦的現象。再者,為了符合在實務上之應用,本研究利用微機電製程之設備來製作頻率為100 MHz和200 MHz的微小化超音波噴墨頭。我們成功的製作出四階之100 MHz與200 MHz之聚焦透鏡。另外在氧化鋅壓電薄膜鍍製方面,目前已成功濺鍍出具有(002)之C軸方向的氧化鋅薄膜。本篇論文已初步驗證微小化超音波噴墨頭之製作並且累積實驗室在微機電製程上之經驗。並且能夠利用設計介面快速完成噴頭模型之尺寸建立並且能有效的利用實驗參數來製作超音波噴墨器。

並列摘要


Different to the thermal-bubble and piezoelectric actuation methods, acoustic inkjet printing is a novel technique used for drop-on-demand printing technology. This thesis analyzes several basic theories about ultrasonic inkjet ejector, for instance, resonance theory of piezoelectric film, focal plane floating over the resonant frequency, and optimum selection for the sound impedance matching layer. And we establish a design interface to integrate these analyses for more convenient to construct the ultrasonic ejector model. Besides, this thesis also demonstrates the practicability of ultrasonic ejection through large-scale model which is designed at 1 MHz resonant frequency. In this experiment we can obviously observe the sound focusing phenomenon in the liquid surface. Furthermore, we fabricate the micro-scale binary Fresnel lens with operating frequency at 100 MHz and 200 MHz in order to meet the practical applications. The micro-scale ultrasonic ejector can be done through MEMS apparatuses such as spin coater, mask aligner, ICP and RF sputter. We succeed fabricating the 4-steps lenses at 100 MHz and 200 MHz. And the ZnO film is successfully sputtered and possesses strong (002) orientation so that the ultrasonic waves can be generated. This thesis preliminarily testifies the practicability of micro-scale ultrasonic ejector, and accumulates the lab experience of fabrication in MEMS technology. Through this study we can quickly construct the ejector model by design interface, and effectively fabricate the micro-scale ejector referring to the experimental parameters.

參考文獻


H. C. Wu, W. S. Hwang and H. J. Lin, 2004, “Development of a three-dimensional simulation system for micro-inkjet and its experimental verification,” Materials Science and Engineering A, Vol. 373, pp. 268-278.
J. Brünahl, 2003, Physics of Piezoelectric Shear Mode Inkjet Actuators, Universitetsservice US-AB, Stockholm, ISBN 9162856758.
B. T. Chu and R. E. Apfel, 1982, “Acoustic Radiation Pressure Produced by a Beam of Sound,” Journal of the Acoustical Society of America, Vol. 72, No.6, pp. 1673-1687.
Ph. Defranould, 1981, “High Deposition Rate Sputtered ZnO Fin Films for BAW and SAW Applications,” Proceedings of 1981 IEEE Ultrasonics Symposium, pp. 483-488.
D. Huang and E. S. Kim, 2001, “Micromachined Acoustic-Wave Liquid Ejector,” Journal of Microelectromechanical Systems, Vol. 10, No. 3, pp. 442-449.

延伸閱讀