透過您的圖書館登入
IP:3.14.141.228
  • 學位論文

結合電化學與電泳沉積之微孔複合加工研究

A study of ECM/EPD complex micro-hole machining technology

指導教授 : 顏炳華
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究主要是利用螺旋電極來同時進行微電化學鑚孔與電泳沉積拋光微孔內壁之複合加工研究。而本研究大致分為兩大部分: 第一部分是先利用螺旋電極進行微電化學鑚孔之研究,螺旋電極於微孔加工中正向旋轉時,新電解液會被帶入螺旋電極之加工區域中,並沿著電極肩部進入電極底部,可將電化學反應產生的氣泡、金屬氧化物、及熱能等雜物擠壓排出,使加工區域的電解液獲得更新;結果顯示可將傳統圓柱電極,加工後之入口孔徑425 μm與出口孔徑362 μm減少為335 μm及299 μm,有效改善微電化學鑽孔後的微孔形狀精度。 第二部分則是複合加工研究,運用電泳沉積法於螺旋電極表面沉積SiC磨粒,其中以酚醛樹脂作為結合劑,經高溫烘烤製程而製成微複合工具,再使用該微複合工具同時施行微電化學鑽孔及微孔內壁拋光之複合加工,利用微細的磨料粒度與披覆沉積層之絕緣性,來達到改善微孔內壁表面粗糙度、錐度與形狀精度;實驗結果顯示,可將螺旋電極電化學鑽孔加工之Ra 0.4 µm降至Ra 0.041 µm,對改善表面粗糙度效果相當明顯。

並列摘要


The study presents ECMD and EPDP complex micro-hole machining by using helical tool simultaneously. This experiment includes two parts: First, ECMD machining by using helical tool is investigated. New electrolyte is carried to the machining area by rotating helical tool. Therefore, these bubbles, metal oxides and heat that produced by ECM reaction can be removed. Electrolyte also can be renew in the machining area. The inlet and outlet diameters of the micro holes could be improved from 425 μm and 362 μm using cylindrical tool to 355 μm and 299 μm respectively. The result of using helical tool as a novel solution in ECMD process to improve the machining accuracy. Second, ECMD and EPDP complex micro-hole machining experiment was performed. The helical tool can be deposited with SiC particles in Phenolic resin solution as a micro hybrid tool by electrophoretic deposition phenomenon. The SiC-coated helical tool (micro hybrid tool) is used in ECMD and EPDP complex micro-hole machining.experiments. Expect to using fine SiC particles and insulate coating layer that modify inner surface roughness of micro hole , taper and machining accuracy. When the helical tool is used, the inner surface roughness of micro hole is Ra 0.4 µm. By using micro hybrid tool , the inner surface roughness of micro hole declines markedly to Ra 0.041 µm. The inner surface roughness of micro hole can be significantly improved.

參考文獻


[1] J. F. Wilson, (1st), Practice and Theory of Electrochemical Machining, Wiley-interscience, pp.4-7, 1971.
[2] B. Bhattacharyya, M. Malapati, J. Munda, “Experimental study on electrochemical micromachining”, Journal of Materials Processing Technology, Vol.169, pp.485-492, 2005.
[4] K. P. Rajurkar, G. Levy, A. Malshe, M. M. Sundaram, J. McGeough, X. Hu1, R. Resnick, A. DeSilva, “Micro and Nano Machining by Electro- Physical and Chemical Processes”, Annals of the CIRP, Vol.55, pp.643-666, 2006.
[5] R. Schuster, V. Kirchner, P. Allongue, G. Ertl, “Electrochemical micromachining”, Science, Vol.289, pp.98-101, 2000.
[6] J. Kozak , Kamlakar P.Rajurkar, Y. Makkar, “Selected problems of micro-electrochemical machining”, Journal of Materials Processing Technology, Vol.149, pp.426-431, 2004.

被引用紀錄


林聖育(2011)。磁場輔助微電化學鑽孔加工特性之研究〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-1903201314420207
洪偉誌(2014)。微結構電化學加工底部R角之改善策略分析與實做研究〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0412201511584469
葉金璋(2014)。線放電切割與電解磨削應用於多晶矽晶碇之加工特性研究〔博士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0412201511594022

延伸閱讀