透過您的圖書館登入
IP:18.224.39.74
  • 學位論文

以奈米小球提升矽薄膜太陽能電池吸收之研究

Research on the absorption of silicon thin-film solar cell with nanosphere structure

指導教授 : 李正中 陳昇暉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文使用溶膠-凝膠法在鹼性環境下形成奈米級的小球有成本低且容易大量製造的優點。並將小球以Dip-Coating的方式單層鋪排在玻璃基板上,再利用物理氣相沈積法(PVD)的方式製鍍薄膜太陽能電池的吸收層,相較於目前業界所使用的化學氣相沈積法(CVD)來說,有設備成本低吸無毒的優點。故本文採用射頻磁控濺鍍系統來鍍製薄膜太陽能電池之吸收層。 目前有許多種方式來增加薄膜太陽能電池對太陽光譜的吸收效率,其中texture為一個重要且熱門的研究主題。本文以奈米級的小球作為新式的texture結構並應用在太陽能電池中的吸收層上。借由探討小球的形狀讓光在吸收層中路徑變長使得吸收機率變高進而增加入射光的吸收,由實驗証實在使用小球後比起同製程下無小球結構的矽薄膜在波長550nm~700nm吸收增加的效果特別顯著。其中250nm的矽薄膜搭配250nm的球可以在長波長有6.2倍的增加。 本文中利用觀察SEM的結果來推測矽薄膜的成膜的機制。再利用FDTD軟體建立一個模擬來驗證實驗量測得到的數值。證實使用奈米球的確可以幫助太陽能電池的吸收層得到更多的光,增加吸收量。因此可以在有小球結構下可以讓我們的吸收層厚度變低讓制程時間變短,所須要的厚度變低進而達到成本降低的目的。

並列摘要


Thin film solar cells generated less power per area than traditional silicon cells. In this article, the monolayer of nanospheres synthesized by sol-gel method was applied to be the texture structure of the absorption layer in thin film solar cell. How to improve the efficiency becomes an important topic for researchers. Sol-gel synthesized the nanospheres has the advantage of produce easily and cheaply. To compare physical vapor deposition (PVD) with chemical vapor deposition (CVD), CVD had disadvantage like high facility cost and using the toxic processing gases such as silane (SiH_4). Reactive RF-magnetron sputter was employed to fabricate the absorption layer of the thin film solar cell. In this study the absorption was measured by the integrate sphere. To compare the nanosphere structure with the reference structure (without nanospheres), the absorption enhancement in between the wavelength from 550nm to 700nm was simulated and achieved about 3 to 6 times and the mechanism of the deposition was discussed by observing SEM pictures. The simulation was built up and the result shows that the trends of measurement are similar. By using this new texture structure, the fabrication of the solar cell can reduce the production cost, process time, make the thickness of the absorption layer less than before, and increase efficiency.

並列關鍵字

PVD thin film solar cell sol-gel FDTD monolayer nanosphere

參考文獻


[1]韓嘉緯,「以射頻磁控濺鍍法鍍製含氫微晶矽薄膜並探討其應用於膜太陽能電池之可能性」,國立中央大學,碩士論文,2007。
[2]蔡進譯,「超高效率太陽電池-從愛因斯坦的光電效應談起」,物理雙月刊,27卷,5期, 2005。
[3]蘇韋寧,「以脈衝直流磁控濺鍍製作含氫非晶矽薄膜於太陽能電潦之應用」,國立中央大學,論士論文,2007。
[4]Tao Meng et al."Surface texturing by solution deposition for omnidirectional antireflection", APPLIED PHYSICS LETTERS 91,081118,(2007).
[5]Bermel Peter et al." Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals",OPTICS EXPRESS,Vol.15,No.25,2007.

被引用紀錄


莊豐泰(2012)。以FDTD研究發光二極體之效能提昇〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2012.00224
陳煒(2011)。用奈米小球微影法製作多晶矽太陽能電池表面結構〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-1903201314423666
楊永賢(2014)。以不同表面處理方式提昇氮化銦鎵/氮化鎵藍色發光二極體之效能〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-3007201423240400
呂佳承(2015)。本質/磷摻雜氫化非晶矽(a-Si:H)堆疊結構應用於背表面電場光電特性與鈍化品質之關聯探討〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0412201512042553

延伸閱讀