透過您的圖書館登入
IP:18.191.132.194
  • 學位論文

應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製

Implementation on Wideband Low Power CMOS Low Noise Amplifier for K-Band RF Receiver Front-end

指導教授 : 邱煥凱
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文主要在探討K頻段寬頻、低雜訊之低雜訊放大器設計方法,文中提出了三個實現寬頻、低功耗特性的電路設計。電路採用tsmc 0.18-μm CMOS及tsmc 90-nm CMOS兩種製程。 第一個電路設計為一個三級共源極串聯之寬頻低功耗低雜訊放大器,欲設計ㄧ個寬頻之低雜訊放大器,本電路將三級電晶體增益分別匹配在不同的中心頻率下,預期其整體頻寬能到寬頻設計,由於此電路操作於高頻頻率,電晶體內部寄生效應轉趨明顯,因此電路中使用多個共振電路消除寄生效應,進而達到提升增益、降低雜訊之效果;本電路使用tsmc 0.18-μm CMOS製程設計,電路量測結果在24.3 GHz有最大增益7.78 dB,其3-dB頻寬從18 - 28.6 GHz (共10.6 GHz),量測最小雜訊為5.3 dB,線性度量測結果P1dB為-10 dBm、IIP3為-1 dBm,總功率消耗為7.07 mW,實際晶片大小(含下針測試pads)為0.89 × 0.83 mm2。 第二個低雜訊放大器電路為共源極串聯疊接架構,此電路設計重點為將第二級電路使用疊接架構,優點在於疊接架構可提供比共源極電路更大的增益,且由於電路架構關係,增加電路之隔離度,由於高頻電容寄生效應會造成雜訊增加,因此在疊接架構兩顆電晶體間串連一電感來降低雜訊。此電路量測最大增益為8.6 dB,其3-dB頻寬從19.4 - 27.8 GHz(共8.4 GHz),量測最小雜訊為6.8 dB。線性度量測結果P1dB為-10.5 dBm、IIP3為1.5 dB,總消耗功率為10.5 mW,晶片大小為0.89 × 0.83 mm2。 最後一個電路為使用tsmc 90-nm CMOS製程設計之變壓器回授既電流再生之寬頻低功耗低雜訊放大器,本次電路為單級疊接架構,將輸入匹配使用一變壓器回授,其優點在於可提升電路增益,為了使得電路操作在低功耗條件下,將電流再生技術加入疊接架構中,達到提高增益、降低功耗之效果。此電路量測結果在23 GHz有11.4 dB的增益,其3-dB頻寬從17.2 - 30 GHz(共12.8 GHz),量測雜訊最小為3.65 dB,而在頻寬內雜訊變化為3.65 - 4.18 dB。線性度量測結果P1dB為-17.5 dBm、IIP3為-6.1 dBm,電路總消耗功率為6.11 mW,晶片面積為0.95 × 0.6 mm2。

關鍵字

低雜訊放大器 K頻段 寬頻 低功耗

並列摘要


The primary target of this thesis is to design wideband and low power K-band low noise amplifier (LNA). There are three different circuit designs which are design in tsmc 0.18-μm CMOS and tsmc 90-nm CMOS processes. The first LNA circuit is a wideband, low power LNA using three stages common-source topology. In order to obtain a wideband response, the stagger tuning technique is utilized. At high frequencies, since the parasitic capacitances degrade the gain and contribute considerable noise, series-peaking inductors are used to resonate the parasitic capacitances. The proposed LNA achieved a measured maximum gain of 7.78 dB at 24.3 GHz. The 3-dB bandwidth is 10.6 GHz from 18 - 28.6 GHz. The minimum noise figure is 5.3 dB. The input 1-dB gain compression point (P1dB) is -10 dBm, and the third-order intercept point (IIP3) is -1 dBm. Total power consumption is 7.07 mW, and the chip size including testing pads is 0.89 × 0.83 mm2. The second circuit is a two-stage wideband low noise amplifier. The first stage of the LNA adopted common-source topology with inductive source-degeneration to achieve both impedance and noise matching simultaneously. Meanwhile, the second stage used cascode topology. This topology can mitigate the Miller effects and improves the isolation between input/output ports. However, at high frequency, the parasitic capacitances in cascode topology also degrade the gain and contribute considerable noise. Accordingly, a series inductor is utilized to resonate the effect of the parasitic capacitance. Based on this design consideration, the LNA shows a gain of 8.6 dB with 10.5 mW power consumption, and a minimum noise figure of 6.8 dB. The P1dB is -10.5 dBm, and the IIP3 is 1.5 dBm. Total chip size including pads is 0.89 × 0.83 mm2. The final LNA circuit is a wideband, low power low noise amplifier with transformer feedback input matching and the current-reused topology in 90-nm CMOS process. The current-reused technique is employed to reduce the power consumption. The input matching adopts a gate-source feedback transformer to achieve impedance and noise matching. The proposed LNA achieves a gain of 11.4 dB over a 3-dB bandwidth from 17 to 30 GHz and a minimum noise figure of 3.65 dB. The measured P1dB is -17.5 dBm and the IIP3 is -6.1 dBm at 24 GHz. The LNA consume only 6.11 mW from a 1.3-V supply. The chip size is 0.95 × 0.6 mm2.

並列關鍵字

low noise amplifier K-band wideband low power

參考文獻


[1]D. K. Shaeffer and T. H. Lee, "A 1.5-V, 1.5-GHz CMOS low noise amplifier," IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
[2]K.-W. Yu, Y.-L. Lu, D. Huang, D.-C. Chang, V. Liang, and M.-F. Chang, "24 GHz low-noise amplifier in 0.18μm CMOS technology," Electronics Letters, vol. 39, no. 22, pp. 1559-1560, Oct. 2003.
[5]Y.-L. Wei, S. S. H. Hsu, and J.-D. Jin, "A low-power low-noise amplifier for K-Band applications," IEEE Microw. and Wireless Compo. Lett., vol. 19, no. 2, pp. 116-118, Feb. 2009.
[7]A. Sayag, S. Levin, D. Regev, D. Zfira, S. Shapira, D. Goren, and D. Ritter, "A 25 GHz 3.3 dB NF low noise amplifier based upon slow wave transmission lines and the 0.18 μm CMOS technology," in IEEE Radio Freq. Integr. Circuits Symp., June-April 2008, pp. 373-376.
[8]B. Seo and S. Jeon, "An 18-32 GHz ultra wideband low-noise amplifier with a low variation of group delay," in IEEE MTT-S Int. Microw. Symp. Dig., June 2012, pp. 1-3.

被引用紀錄


李忠穎(2015)。應用於 5-11 GHz寬頻低雜訊放大器與5 GHz/11 GHz雙頻低雜訊放大器之研製〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0412201512075142

延伸閱讀