透過您的圖書館登入
IP:18.221.165.81
  • 學位論文

表面粗化技術對矽基異質接面薄膜太陽能電池元件之研究

Surface Texturization Technology on the Applications of Heterojunction Silicon Solar Cells

指導教授 : 陳昇暉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


太陽能電池元件的光生電流大小與元件的光損耗(Optical loss)有關,對於經拋光處理後的平面單晶矽晶圓基板而言,於其材料吸收波段的入射光平均反射率會高達36%左右,這對於電池元件而言是非常大的光損耗現象,因此製作高效抗反射結構應用於電池元件上一直是非常熱門的研究題目之一。本論文研究主題在於利用奈米小球微影方法(Nanosphere lithography)於矽晶圓表面製作奈米級二維週期性粗化結構,使矽晶圓對於其吸收波段的平均反射率能夠大幅降低,並將此奈米級粗化結構應用於本研究團隊核心技術之磁控濺鍍法製備矽基異質接面薄膜太陽能電池上,接著探討分析粗化結構的參數變化對於電池元件輸出特性的影響。 本論文首先會探討磁控濺鍍參數與製備異質接面電池元件中的矽薄膜特性變化關係,並選擇合適的矽薄膜應用於電池元件上得到初步的元件效率,再針對元件製程以及透明導電膜的結構進行改良優化之研究,進而得到轉換效率穩定且再現性佳的電池元件。接著製作出不同結構參數的奈米級粗化結構矽基板應用於電池元件表面,探討奈米抗反射結構對電池元件輸出特性的影響。本論文之實驗結果證實利用奈米小球微影法製作出的最佳奈米級表面抗反射結構於波長區段為400 nm~1000 nm之平均反射率可降低至1.24%,而加上適當厚度抗反射薄膜則可將基板平均反射率再優化至0.53%。另外,結合奈米小球微影法製程之粗化結構異質接面電池元件的最低平均反射率可降至2.04%,該粗化結構對電池元件轉換效率的提昇效果可達31.49%。

並列摘要


The photo-currents of solar cells are dependent on the optical loss. For example, there is about 36% of average reflectance on a polished Si wafer within the absorb wavelength region. Therefore, how to fabricate an anti-reflection structure to achieve a high efficiency solar cell has been one of the popular research topics. In this research, a method for a HJT solar cell fabricated by using radio frequency magnetron sputtering has been described. The HJT solar cell was formed on a nanostructure silicon substrate fabricated using the nanosphere lithography process. The nanostructure properties were analyzed to compare with the output characteristics of the HJT solar cell. According to our measurement results, the average reflectance of a Si wafer with the bullet anti-reflection nanostructure was decreased to 1.24% between the wavelength arrange of 400 nm ~ 1000 nm. Then we deposited an anti-reflection thin film on the bullet nanostructure to achieve a better anti-reflection effect where the average reflectance was decreased to 0.53%. The best conversion efficiency of the nanopattern silicon substrate (NPSiS) HJT solar cell was 31.49% greater than that of the HJT solar cell on a flat silicon wafer. The average reflectance of the NPSiS HJT solar cell and the polished HJT solar cell were 2.04% and 14.80%, respectively.

參考文獻


[1.4] G. A. Martin, E. Keith, H. Yoshihiro, W. Wilhelm and D. D. Ewan “Solar cell efficiency tables (version 43)” Progress in Photovoltaics: Research and Application, 22, 1-9, (2014).
[1.5] M. Tanaka, T. Matsuyma, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, "Devolpment of New a-Si/ c-Si Heterojunctiom Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)" Applied Physics Letters, 31, 3518-3522, (1992).
[1.7] M. H. Brodsky, R. S. Title, K. Weiser and G. D. Pettit, “Structural, optical, and electrical properties of amorphous silicon films”, Physical Review B, 1, 2632-2641, (1970).
[1.8] G. A. N. Connell and J. R. Pawlik, “Use of hydrogen in structural and electronic studies of gap states in amorphous germanium”, Physical Review B, 13, 787-804, (1976).
[1.9] A. J. Lewis, “Use of hydrogen in the transport properties of amorphous germanium”, Physical Review B, 14, 658-668, (1970).

延伸閱讀