透過您的圖書館登入
IP:13.59.100.42
  • 學位論文

以熱熔異質磊晶成長法製造之鍺光偵測器

Silicon/Germanium Heterojunction Photodetector by Rapid-Melting-Growth Technique

指導教授 : 辛正倫
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年矽鍺整合技術逐漸應用於電子元件及光電元件,係利用鍺元素具備之高電子電洞遷移率及窄能帶的特點,可以製作出高響應度、高頻率的電子元件,但由於矽/鍺元素之間具有4%以上的晶格常數不匹配,使矽鍺異質磊晶在整合上有一定的困難。一般使用的方法是直接磊晶鍺於矽基板上,但是此方法需要使用到昂貴的超高真空機台,且磊晶成長慢、所需時間長,才能得到高品質單晶鍺,會增加製程的成本以及積體電路整合的困難性。 一般所提到的快速熱熔異質磊晶成長法係先於矽基板上沉積絕緣層,在絕緣層上方蝕刻出約1X1 µm^2的開口作為晶種視窗區,再沉積高品質單晶鍺做為晶種,沉積非晶鍺於晶種視窗區上方,並沉積非晶絕緣層覆蓋非晶鍺的區域,將試片利用快速熱熔異質磊晶成長法重新排列非晶鍺晶格結構,以此方法得到高品質的單晶鍺,並且大幅降低熱預算和降低矽/鍺異質接面的整合難度。 在本論文中的實驗直接將非晶鍺漸鍍於矽基板上,再沉積非晶絕緣層進行包覆其非晶鍺區域,進行快速熱熔異質磊晶重新成長出高品質鍺,並利用TEM、SEM及拉曼光譜觀測重新排列的鍺品質,針對矽鍺接面產生的缺陷進行探討。後續利用所成長的高品質鍺,經由元件結構設計製作垂直式PIN光偵測器,同時量測其光響應特性及表現。

並列摘要


Silicon/Germanium integration receives a lot of attention for both electronic and photonic devices; because pure germanium has a narrow band gap with electronic and hole mobility four times greater than that of silicon. These out-performed characteristics make germanium an ideal candidate for high speed electronics. However pure germanium grown on silicon is critical due to the lattice mismatch (4.2%) between these two semiconductors. Generally germanium epitaxy technique was high cost which use high vacuum machine. However it growth slow and take a lot of time, then can get high quality crystal germanium. It will enhance silicon/germanium integration difficulty. In this article, we use liquid-phase-epitaxy and rapid-melting-growth germanium technique, then can get high quality germanium. It was take low heat cost. Then we use TEM, SEM and Raman spectrum to observe the growth germanium quality and discuss silicon/germanium hetrojuction dislocation. Then produce single crystal germanium PIN photodector devices and discuses responsibility.

參考文獻


[1]H. J. R. Dutton, “Understanding Optical Communications,” 1998.
[2]J. S. Youn, M. J. Lee, K. Y. Park, and W. Y. Choi, “10-Gb/s 850-nm CMOS OEIC Receiver with a Silicon Avalanche Photodetector,” IEEE J. Quantum Electron., vol. 48, No.2, Feb. 2012.
[3]Joseph C. Palais, “Fiber Optic Communications,” 1984.
[6]J. E. Bowers and C. A. Bums, Jr., “Ultrawide-band long-wavelength p-i-n photodetectors,” Lightwave Technol. , vol. LT-5, 1987.
[7]J.-W. Shi, P.-H. Chiu, F.-H. Huang, Y.-S. Wu, Ja-Yu Lu, C.-K. Sun, C.-W. Liu, and P.-S. Chen, “Si/SiGe-based edge-coupled photodiode with partially p-doped photo absorption layer for high responsivity and high-power performance,” IEEE Appl. Phys. Lett., vol. 88, issue. 19, May 2006.

延伸閱讀