透過您的圖書館登入
IP:3.145.170.65
  • 學位論文

銀-聚苯乙烯殼核球於高分子分散液晶薄膜元件之應用

Application of Ag-PS Core Shell Microspheres Doped Polymer Dispersed Liquid Crystal Film

指導教授 : 陳啟昌 詹佳樺
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在本論文中,我們探討PMMA微米球及銀微米球摻雜在高分子分散液晶(Polymer Dispersed Liquid Crystal, 簡稱PDLC)中的光電特性,藉由操作電壓的調變可以控制此元件從散射態轉為穿透態。 本實驗分成三部分,實驗的第一部分我們利用不同的高分子材料,分析材料對於PDLC光電性質之影響,第二部分我們在PDLC元件中摻入直徑為3m之PMMA微米球,維持穿透態應有穿透率並降低操作電壓,第三部分的實驗,將直徑為3m之銀微米球摻入PDLC元件,大幅降低了元件從散射態至穿透態所需之操作電壓。 PDLC光電性質優化之結果,我們利用摻雜5 wt%、直徑為3微米之銀微米球摻入PDLC中,操作電壓為44伏特且穿透態維持高穿透率70%,有效的降低操作電壓,減少元件操作時能源的損耗。最後,我們利用此結果,進行大尺寸之PDLC元件製作,增加實際的應用性。

並列摘要


In this study, we investigate the electro-optic properties of Polymer Dispersed Liquid Crystal (PDLC) doped with PMMA and Ag microspheres. It can be switched from light scattering to transparent states by modulating the applied AC voltage. The study in this thesis is divided into three parts. In the first part, we discussed the influence of the weight ratio of LC and polymer on their electric-optic properties. In the second part of experiment, the required applied AC voltage to obtain transparent state can be reduced by doping PMMA microspheres whose diameter is about 3 um. In the third part of experiment, it is demonstrated that the applied AC voltage can be further reduced by doping with 3 m-diameter silver microspheres. By doping with 5 wt% 3 m-diameter silver microspheres into PDLC cell, the electro-optic properties of PDLC can be optimized. The operating voltage to provide 70 % transmittance is reduced to 44 V, so that the energy consumption can be reduced significantly. Additionally, we have also successfully demonstrated such a PDLC device having large panel size.

並列關鍵字

PDLC LC

參考文獻


[1] S. T. Wu and D. K. Yang, “Reflective Liquid Crystal Displays, ” John Wiley & Sons Inc, New York, 2001.
[2] C.T. Liu, “Revolution of the TFT LCD technology, ” J. Display Technol, Vol 3, pp. 342–350, 2007.
[3] C. H. An, J. Yang, Y. E. Lee, C. H. Kim, E. Nam, D. Jung, M. Ho. Cho, and H. Kim, “A Triple-Layered Microcavity Structure for Electrophoretic Image Display,” IEEE Trans. On Electron Device, Vol 58, pp. 1116-1120, 2011.
[4] D. W. Lee and J. W. Shiu, “Writable Cholesteric Liquid Crystal Display and the Algorithm Used to Detect Its Image,” Journal Of Display Technology, Vol 5, pp. 172-177, 2009.
[5] B. Y. Lee and J. H. Lee, “Printable flexible cholesteric capsule display with a fine resolution of RGB subpixels,” Current Applied Physics, Vol 11, pp. 1389-1393, 2011.

延伸閱讀