透過您的圖書館登入
IP:18.221.198.132
  • 學位論文

二氧化銥/氧化還原石墨烯複合觸媒之水電解效能研究

Study on IrO2/RGO hybrid as an oxygen evolution electrocatalysts in the performance of water electrolysis

指導教授 : 洪勵吾
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


氫氣是乾淨且對環境友善的燃料,已被視為最具潛力的能源來源之一,在許多產氫方法中,其中又以結合再生能源的水電解是最具前景,且最簡單獲得高純度產氫的方法。 本研究利用中溫水熱法合成IrO¬2/RGO觸媒,並使用XRD、TEM、EDS和Raman來進行觸媒材料特性分析,由XRD分析可知,所製作之複合觸媒確實存在個別晶相結構;而由TEM圖可知,可看見IrO¬2粒子均勻地分佈在石墨烯表面上;由EDS分析可知,複合觸媒確實含有Ir、C、O等元素;最後由拉曼圖D/G強度比值變大可知石墨烯氧化物確實還原成石墨烯。 觸媒合成製備完成後,藉由改變觸媒塗佈量、旋轉塗佈轉速、工作電極旋轉等參數,探討觸媒效能與LSV電化學量測、EIS等效電路模擬和氧氣泡生成行為觀察等之間的關聯性。 實驗結果顯示,電解性能在塗佈量70μL時有最好OER表現但電解過程不穩定;在旋轉塗佈轉速250rpm時有最佳薄膜形成且使觸媒均勻塗佈;在工作電極轉速2000rpm時有最小之濃度極化和最佳產氫效率,最後氧氣泡觀測可發現改質後觸媒有較小氣泡大小、較多氣泡數量、較佳氣泡覆蓋率的產生。

並列摘要


Hydrogen is clean and environmentally friendly as a green fuel, and has been regarded as one of the most potential energy resources. Among the methods of hydrogen production combined with the renewable energy, water electrolysis is the most promising solution, and the simplest method to obtain high-purity hydrogen. First of all the study, graphene supported IrO2 catalyst (IrO2/RGO) is composite by hydrothermal method. XRD, TEM, EDS and Raman tests are conducted to synthesis catalyst characterization, which reveal that IrO2 nanoparticle is uniformly supported on RGO surface. Secondly, by changing thin film forming parameters, e.g., catalyst loading, spin coating speed, and rotation of working electrode, attempts and performs to find out the connections between thin film process and electrochemical measurement like LSV, EIS, etc. Experimental results show that with the more catalyst loading, the better electrolysis performs; and the loading of 70μL gives the best performance in water electrolysis. By increasing the spin coating rate, electrolysis get worse; and the spin coating of 250rpm yields the best performance. As to the rotation of working electrode, 2000rpm gives the best hydrogen production efficiency and the lowest concentration polarization.

參考文獻


[3] W. Kreuter and H. Homann, “Electrolysis: The important energy transformer in a world of sustainable energy,” International Journal of Hydrogen Energy, Vol.23, pp.661-666(1998).
[4] R.F. de Souza, J.C. Padilha, R.S. Gonҫalves, and J.Rault-Berthelot, “Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis,”Electrochemical Communications, Vol.8, pp.211-216(2006).
[5] D.Lj. Stojić, M.P. Marčeta, S.P. Sovilj, and Š.S. Miljanić, “Hydrogen generation from water electrolysis – possibilities of energy saving,” Journal of Power Sources, Vol.118, pp.315-319(2003).
[6] N. Nagai, M. Takeuchi, T. Kimura, and T. Oka, “Existence of optimum space between electrodes on hydrogen production by water electrolysis,”Journal of Power Sources, Vol.118, pp. 315-319(2003).
[7] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umno, and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting,” International Journal of Hydrogen Energy, Vol.26, pp.653-659(2001).

延伸閱讀