透過您的圖書館登入
IP:3.138.134.102
  • 學位論文

內環狀官能基之中孔洞矽材應用與類沸石咪唑骨架材料包覆酵素的催化探討

指導教授 : 謝發坤
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本篇論文分成兩個部分: 第一部分:本實驗室成功將先前發表的新型環狀中孔洞材料XC-CAR-10應用於鑭系金屬吸附,X代表雙胺基化合物中間的碳數。此種環狀中孔洞材料利用大環分子效應提升其對鑭系金屬的吸附能力,其中3C-CAR-10能與螫合金屬離子形成六圓環穩定結構,且對於鉺離子具有相當良好的吸附能力,其飽和吸附能力約為290 µg/mg。並藉由環狀中孔洞材料中鉺離子和磷酸化蛋白質的螯合作用,使用固定化金屬離子親和層析法 (IMAC),使磷酸化蛋白質成功被純化出來,其純化回收率可高達百分之九十。 第二部份:本實驗室先前成功將酵素置於ZIF-90的合成環境中進行從頭合成 (de novo) 反應,得到保留酵素活性的複合孔洞材料。但材料中酵素催化反應速率與天然狀態相比仍有下降,推測載體粒子大小為原因之一。故本實驗室依照文獻改良得到快速合成微米級ZIF-8的方法,並以類似條件合成奈米級ZIF-8,同時得到最佳化條件,期望能利用此兩種尺寸的ZIF-8對酵素的催化反應速率進行後續探討。

並列摘要


The first part of my research is based on our previous report, which demonstrated the synthesis of annular-functionalized mesoporous silica with controllable size (namely, XC-CAR-10, where X represents the number of carbons in the diamines used) with a fabulous adsorption ability to metal ion owing to macrocyclic effect. Herein, we applied the annular-functionalized mesoporous silica for the lanthanide ion adsorption and further utilized the lanthanide-adsorbed mesoporous silica for phosphorylated protein purification by use of Immobilized Metal Affinity Chromatography (IMAC). It is worth noting that adsorption of 3C-CAR-10 towards ~290 µg/mg of Er3+ was achieved, and the Er3+-3C-CAR-10 showed the remarkable purification capability and selectivity of phosphorylated peptide with about 90% elution recovery. The second part of my research is based on our previous report, which demonstrated a de novo synthesis of enzyme@ZIF-90 (Zeolitic imidazolate framework-90) and retained the enzyme activity. However, the catalytic rate of the embedded enzymes was still much slower than the native ones. One of the probable reasons of the loss in catalytic rate was likely attributed to the mass transfer owing to the particle size of carriers. Thus, the rapid syntheses of ZIF-8 with nano- and micro- size are modified and optimized in order to determine the connection between the catalytic rate of the embedded enzyme and mass transfer with size-dependent effect.

並列關鍵字

無資料

參考文獻


1. Everett, D. H., Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. In Pure and Applied Chemistry, 1972; Vol. 31, p 577.
2. Lee, C. H.; Lin, T. S.; Mou, C. Y., Mesoporous materials for encapsulating enzymes. Nano Today 2009, 4 (2), 165-179.
3. Hudson, S. P.; Padera, R. F.; Langer, R.; Kohane, D. S., The biocompatibility of mesoporous silicates. Biomaterials 2008, 29 (30), 4045-4055.
4. Wang, S.; Zhang, M.; Zhang, W., Yolk−Shell Catalyst of Single Au Nanoparticle Encapsulated within Hollow Mesoporous Silica Microspheres. ACS Catalysis 2011, 1 (3), 207-211.
5. Niu, N.; He, F.; Ma, P. a.; Gai, S.; Yang, G.; Qu, F.; Wang, Y.; Xu, J.; Yang, P., Up-Conversion Nanoparticle Assembled Mesoporous Silica Composites: Synthesis, Plasmon-Enhanced Luminescence, and Near-Infrared Light Triggered Drug Release. ACS Applied Materials & Interfaces 2014, 6 (5), 3250-3262.

延伸閱讀