透過您的圖書館登入
IP:216.73.216.134
  • 學位論文

應用機器視覺搭配類神經網路對CCD sensor作影像對位之研究

Application of machine vision with neural network to alignment for CCD sensor

指導教授 : 黃衍任
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


一個好的光學成像系統必須建立在沒有像差的基準上,而會造成像差的原因有許多種,其中最常發生的原因是無法對焦於同一光軸上的任一點,各相機系統廠為解決此項問題大多利用雷射準直儀,作為鏡片及CCD Sensor的平行對位校正,但此類型的設備較為昂貴。 目前機器視覺的技術已發展成熟,廣泛的應用在各產業界中,其中不乏使用在對位技術方面,本研究係經由影像切割將背景與檢測樣本作區分後,在進行行距間的量測判定,利用兩組CCD分別架設於機台的上側與前側,計算出樣本XYZ軸的平行度與間距是否與設計值相同,並透過類神經網路的學習過程,將判定的準確率接近至百分之百,使其數位相機的像差問題,可獲得有效的改善。

並列摘要


A good optical imaging system must be established benchmarks in the absence of aberration ,The reasons can cause many types of aberration ,which is the most common reason for not focusing on any point on the same optical axis ,The ODM(Own Designing & Manufacturing) factory of DSC(Digital Still Camera) to solve the problem mostly use the laser on the favorite ,as the lens and the CCD Sensor parallel alignment correction ,However ,this type of equipment is more expensive. Currently ,machine vision technology has been developed ,Widely application in all works of life and always can be find in technology of location alignment ,This paper is research how to measurement space ,after Image segmentation to distinguish between background and test samples ,using two CCD and set up at the working platforms top side and front side ,Calculate the Parallelism and spacing of sample XYZ axis is same or not with the design value ,through the learning process of Artificial neural network ,let error rate will be close to design values as low as ,and aberrations problem of digital camera could be improved.

並列關鍵字

Machine Vision Image processing ANN

參考文獻


[6]席友亮、李芳繁,“以機器視覺分級文心蘭切花之研究”,農業機械學刊,2001.
[2]蔡孟頎,“倒傳遞類神經網路於多腳位元件影像對位最佳化之研究”,國立
[5]陳靜怡,“影像處理及類神經網路於微細胞核自動計數之應用”,元智大學資訊管理學系碩士論文,2005.
[7]黃敏峰,“人臉追蹤法應用於監控系統之研究”,國立成功大學電機工程學系碩士論文,2003.
[8]陳昭彰,“運用機器視覺於液晶面板上液晶量之檢測”,國立成功大學工程科學系碩士論文,2007.

延伸閱讀