透過您的圖書館登入
IP:18.188.40.207
  • 學位論文

以多壁奈米碳管吸附水中雙酚A之特性研究

The research of the adsorption properties between multi-walled carbon nanotubes and bisphenol A

指導教授 : 秦靜如
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


由於奈米碳管多方面運用於各材料上的發展,必定會造成排放之問題,造成水體的汙染及生態環境上的變遷影響,故本研究為進一步了解其內部特性及吸附機制,挑選四種常見之化學氧化法(HNO3、piranha、NH4OH 25 %: H2O2 30 % = 50:50加熱迴流;KOH高溫氧化)作為碳管改質的方式,進行對於同樣被廣泛利用且被間接排入水體中的雙酚A之吸附實驗,探討其吸附行為與機制,有助於解決自然水體環境汙染問題。 研究發現經過氧化後之碳管其表面積、純度與官能基皆有增加之趨勢,動力吸附實驗方面,達吸附平衡時間由快至慢為A-MWCNTs(原始購得碳管)、N-MWCNTs(經HNO3氧化後碳管)、K-MWCNTs(經KOH氧化後碳管),且其飽和吸附量各為0.3116、0.2039、0.5919 mmole/g,且皆較符合擬二階動力學模式。而在pH值之影響方面,發現主要受到雙酚A本體之解離作用影響,當雙酚A解離後帶負電與帶有負電官能基之奈米碳管表面定性正好相同,故雙酚A與碳管間形成靜電斥力,使得各種碳管之吸附環境pH值越高,有吸附量下降之趨勢。 等溫吸附實驗方面,主要影響吸附量多寡的原因為碳管的比表面積,尤其是K-MWCNTs,其氧化之強破壞力產生的高表面積而造成高吸附量,但吸附力仍受各氧化程序後產生之表面酸含氧官能基作用,而使吸附量下降,這也是A-MWCNTs之表面積雖高於N-MWCNTs,但相對吸附量卻相反之原因。在15、25、35℃下A-MWCNTs與N-MWCNTs皆符合Langmuir isotherm model,而K-MWCNTs則無法判定。且△Ho皆小於零,表示吸附過程為放熱反應,△Go亦皆小於零,可判定吸附反應為自發性。

並列摘要


Due to various applications of carbon nanotubes, their discharge into natural water is expected and their adsorption phenomena should be studied to understand their fate and transport. In this study, four common chemical oxidation methods were chosen to modify multi-walled carbon nanotubes (MWCNTs), they are, HNO3, piranha, NH4OH 25 %: H2O2 30 % = 50:50, and KOH. Bispenol A (BPA) were adsorbed to investigate the influences of different oxidation methods of MWCNTs on the adsorption mechanisms. It was found that, with proper oxidation parameters, nitric acid could introduce significant amount of oxygen-containing surface groups without altering the surface structure. Oxidation by KOH increased the surface area of MWCNTs dramatically and introduced oxygen-containing surface groups of the amount similar to that nitric-acid-treated MWCNTs. Thus the adsorption of BPA was only conducted by A-MWCNTs (as-purchased MWCNTs), N-MWCNTs (oxidized by HNO3), and K-MWCNTs (oxidized by KOH). The adsorption rates the fastest to the slowest were A-MWCNTs, N-MWCNTs, and K-MWCNTs and could be described by the pseudo-second order kinetic model. The adsorption capacities of A-MWCNTs, N-MWCNTs, and K-MWCNTs were 0.3116, 0.2039, and 0.5919 mmole/g, respectively. Comparison between the adsorption capacities of A-MWCNTs and N-MWCNTs showed that the oxygen-containing group hindered the π-π interactions and reduced the adsorption of BPA. The adsorption capacity was affected by solution pH, mainly due to the dissociation of BPA. Deprotonation of BPA leaded to electrostatic repulsions between BPA molecules and the surface of MWCNTs at high solution pH and, thus, reduction in the adsorption capacity.The enthalpy and free energy showed that adsorption of BPA on MWCNTs were exothermic and spontaneous.

並列關鍵字

oxidation bisphenol A carbon nanotube adsorption

參考文獻


3. 洪昭南、徐逸明、王宏達,「奈米碳管結構及特性簡介」,化工,第49卷第1期,第23-30頁,2002。
6. 黃建良、黃淑娟,「奈米碳纖與奈米碳管合成技術簡介」,化工,第50卷第2期,第18至25頁,2003。
50. 行政院衛生署,「藥物食品安全周報」,第123期,2008。
1. S.Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, 354, pp.56 (1991).
7. J.M. Lambert, P.M. Ajayan, P. Bernier, J.M. Planeix, V. Brotons, B. Coq, and J. Castaing,“ Improving conditions towards isolating single-shell carbon nanotubes,“ Chemical Physics Letters, 226(3–4), pp.364–371 (1994).

被引用紀錄


杜玉琴(2011)。鄰苯二甲酸酯類和腐植酸在多壁奈米碳管上的吸附〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-1903201314422158
吳瑋羚(2012)。奈米碳管在鄰苯二甲酸酯類溶液與腐植酸溶液中之分散與絮凝〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-1903201314432724
李向曦(2012)。奈米碳管對於硝基酚與銅之競爭吸附〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-1903201314452024
廖唯善(2013)。應用界面活性劑改質多壁奈米碳管/聚醯亞胺奈米複材之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2106201315330800

延伸閱讀