透過您的圖書館登入
IP:3.146.255.127
  • 學位論文

以化學浴沉積法製備Cu-In-S化合物光電極薄膜之研究

The study of Cu-In-S compound photoelectrode thin film by chemical bath deposition

指導教授 : 洪勵吾
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究為利用化學浴沉積法製備Cu-In-S三元化合物光電極薄膜,將其沉積於導電玻璃上,並將其應用於光電化學產氫系統;就製程而言,化學浴沉積法具備設備簡單、製程便宜、產生廢料少及可大面積生產等優點,為經濟效益高的化學製程;就材料而言,Cu-In-S三元化合物可吸收紫外光與可見光波段的能量,且不含貴重金屬,因此成本低,極具發展潛力。本研究改變反應物濃度與比例、反應溶液pH值、燒結溫度、油浴溫度、磁石攪拌轉速以及鍍膜層數等參數以進行薄膜的製備,並探討薄膜的材料特性,包括薄膜的結晶性、表面形態、光學及光電化學性質。所製備之Cu-In-S光電極薄膜,在銅銦比為一比二、銦離子濃度0.2M、pH值為0.5、燒結溫度400℃、油浴溫度80℃、磁石轉速750rpm及鍍膜層數兩層有較高之光電流效益,直接能隙值為1.47 eV,而在光電流量測方面,使用Na2S與K2SO3作為犧牲試劑,並利用100 mW/cm^2 (AM 1.5G)的模擬太陽光源照射,於無施加偏壓下,所量測到之光電流值為5.33mA/cm^2 。

關鍵字

產氫 化學浴沉積法 光電極 Cu-In-S

並列摘要


Chemical bath deposition (CBD) is applied to deposit Cu-In-S compound photoelectrode thin film on indium tin oxide coated glass (ITO), which can be used as the photoelectrode in photoelectrochemical production of hydrogen. The advantages of chemical bath deposition method are simple equipment, inexpensive, less waste and large area deposition. Besides, Cu-In-S compound can absorb ultraviolet and visible light, and has non-precious metals so that it has potential to develope. In the experiment, we investigate the crystal structure, morphology, optic property, and PEC performance under various working parameters, such as: precursor ratio, [In3+] molar volume concentration, bath temperature, pH value, number of thin film, stirring rate, thermal treatment temperature. The results show that Cu-In-S photoelectrode thin film with the direct band gap decreasing from 1.47 eV. In PEC measurement, we use Na2S and K2SO3 as sacrificial reagents and 100 mW/cm^2 (AM 1.5G) simulation sunlight as the light source. The photocurrent density of Cu-In-S photoelectrode thin film is 5.33 mA/cm^2 .

參考文獻


2.歐嘉瑞 (經濟部能源局),我國再生能源發展策略,(2010)。
5.A. Kudo, “Development of photocatalyst materials for water splitting”, International Journal of Hydrogen Energy, Vol. 31, pp.197-202 (2006)。
7.A. Fujishima, and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, Vol.238, Number 5358,pp. 37-38, (1972)。
8.A. Kudo, “Recent progress in the development of visible light-driven powdered photocatalysts forwater splitting”, International Journal of Hydrogen Energy, Vol. 32, pp.2673–2678, (2007)。
9.A. Kudo, and Y. Miseki, “Heterogeneous photocatalyst materials forwater splitting”, Chemical Society Reviews, Vol. 38, pp.253-278, (2009)。

延伸閱讀