透過您的圖書館登入
IP:3.129.211.87
  • 學位論文

台灣西北部麓山帶沉積岩的孔隙率-滲透率曲線與微觀構造

Permeability-Porosity relationship and Microstructure of Sedimentary Rocks in Northwest Taiwan

指導教授 : 董家鈞
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


岩石的孔隙率與滲透率影響地下流體在地層中的富集與移棲,因此,對於現今發展中的二氧化碳地質封存,孔隙率與滲透率為相關評估與分析時重要的關鍵參數。岩石的孔隙率大致上隨深度增加而減少,即孔隙率受有效應力影響;而影響岩石滲透率之因素除了有效應力之外,亦包括孔隙的尺寸、形狀與連通性。此外,應力歷史對孔隙率與滲透率也有明顯之影響。為瞭解二氧化碳目標地層的孔隙率-滲透率與微觀構造間關係,本研究透過室內孔隙率、滲透率量測,並配合光學顯微鏡以及掃描式電子顯微鏡,針對岩石的礦物組成與孔隙型態進行測量與描述,並嘗試量化微觀構造對孔隙率-滲透率之影響。根據試驗結果,台灣西北部上新世以及晚中新世沉積岩之孔隙率與滲透率關係式符合冪次律並且反映應力歷史之影響,同時,兩者間關係受岩性、顆粒大小與巨觀孔隙率控制。未來若能取得地層孔隙率井測資料,配合本研究建議之力學壓密作用下孔隙率與滲透率關係式推估滲透率,即可合理評估不同岩性、不同深度地層之滲透率。

並列摘要


The porosity and permeability of rocks influence the storage and migration of the underground fluid in formations. Owing to the developing technology of carbon dioxide, the two parameters are very important for estimating and analyzing. The porosity of rocks changes to the burial depth .In other worlds, the effective stress control the porosity. In addition, not only the effective stress but also the size, shape and connection influence the permeability of rocks. Besides, the stress history also affects the porosity and permeability. To understand the porosity-permeability relationships and the microstructures of carbon dioxide storage information. This study using porosity/permeability measurement system, optical microscope and scanning electron microscope(SEM) to measure and describe the mineral combination and pore shapes. Also, trying to quantify the misconstrues and the influence of microstructures to porosity-permeability relationships The experimental results indicate that the fit of the model to the data points of from sedimentary rock of the west-part of the western offshore of Taiwan(Pliocene and Miocene) can improve by using a power law. Also, the relationship controls by bock type and pore size. In the future, it is useful to combining the logging data of porosity with the porosity-permeability relationship to estimate the permeability of different rock type and depth.

參考文獻


[1] IPCC, IPCC special report on carbon dioxide capture and storage, Final Draft, IPCC Working Group III on Mitigation of Climate Change, 2005.
[3] Holloway, S., Savage, D., “The potential for aquifer disposal of carbon dioxide in the UK”, Energy Conversion and Management, Vol. 34, pp. 925-932, 1993.
[4] Bachu, S., “Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change”, Environmental Geology, Vol. 44, No. 3, pp. 277-289, 2003.
[5] Lin, C. K., “Algorithm for determining optimum sequestration depth of CO2 trapped by residual gas and solubility trapping mechanisms in a deep saline formation”, Geofluids, Vol. 8, pp. 333-343, 2008.
[9] Lin, A. T., Watts, A. B., Hesselbo, S. P., “Cenozoic stratiggraphy and subsidence history of the South China Sea margin in the Taiwan region”, Basin Research, Vol. 15, pp. 453-478, 2003.

被引用紀錄


王玲絲(2012)。苗栗地區儲集層孔隙率與滲透率特性評估〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-1903201314452144
楊盛博(2015)。利用深井岩心探討岩性及構造作用對碎屑沉積岩孔隙率和滲透率之影響〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0412201512092016

延伸閱讀