透過您的圖書館登入
IP:3.143.0.157
  • 學位論文

探討添加離子液體[EMIM][DEP]對於酵素改質玉米澱粉的影響

Effects of added ionic liquid [EMIM] [DEP] for the enzymatic modification of corn starch

指導教授 : 徐敬衡
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究是利用pullulanase水解玉米澱粉來製備高含量的抗性澱粉。經過pullulanase水解後,置於滅菌釜中,以121℃高壓蒸煮1小時,接著在室溫下冷卻之,於4 ℃下、靜置24小時,再重複此步驟一次後,置於60 ℃烘箱中,將樣品烘乾。有添加離子液體的最佳水解條件為反應時間24小時、pH=6.0、反應溫度46 ℃及pullulanase添加量100 μL;而無添加離子液體的最佳水解條件為反應時間32小時、pH=5.5、反應溫度44 ℃及pullulanase添加量150 μL;抗性澱粉含量分別為55.27%與45.44% (w/w)。差示掃描熱分析技術(DSC)被用來分析玉米澱粉及抗性澱粉的糊化溫度,由DSC吸熱曲線顯示,經過改質的玉米澱粉結晶與未改質的玉米澱粉,其結晶完全不同。抗性澱粉的吸熱曲線除了在96 ℃左右出現一個小吸熱峰,在130 ℃左右則又出現另一吸熱峰,Tp為173 ℃左右。隨著抗性澱粉含量增加,Tp也隨之上升。

關鍵字

酵素 離子液體 抗性澱粉

並列摘要


In this research, high resistant starch content product was prepared by hydrolyzing of corn starch with pullulanase. The product of resistant starch was obtained by pressure-cooking the resulting hydrolysate in an autoclave at 121 oC for 1 h, cooling at room temperature, storing at 4 oC for 24 h, autoclaving/cooling for 2 repetition cycle and drying an oven (60 oC). The optimal hydrolyzing conditions were investigated and the optimum conditions with ionic liquid were as follows: time, 24 h; pH, 6.0; temperature, 46 oC; amount of pullulanase, 100 μL. The optimum conditions without ionic liquid were as follows: time, 32 h; pH, 5.5; temperature, 44 oC; amount of pullulanase, 150 μL. The content of resistant starch in the product was 55.27% (w/w) with ionic liquid and 45.44% (w/w) without ionic liquid. Differential Scanning Calorimeter (DSC) was used to determine the gelatinization temperature of corn starch and resistant starch (RS). The DSC curves indicated that there was evident difference between the crystal of corn starch and RS. Besides a small peak at about 96 oC being on the DSC curves of RS, another peak began to appear at about 130 oC, and the peak temperature of transformation was about 173 oC. The transformation peak temperature increased gradually with the enhancement of the RS content in the samples.

並列關鍵字

Enzyme Ionic liquid Resistant starch

參考文獻


[1] Ratnayake W. S., Jackson D. S. Thermal behavior of resistant starches RS 2, RS 3, and RS 4. Journal of Food Science. 2008;73:356-366.
[2] Blazek J., Salman H., Rubio A. L., Gilbert E., Hanley T., Copeland L. Structural characterization of wheat starch granules differing in amylose content and functional characteristics. Carbohydrate Polymers. 2009;75:705-711.
[3] Haralampu S. G. Resistant starch—a review of the physical properties and biological impact of RS3. Carbohydrate Polymers. 2000;41:285-292.
[4] Sharma A., Yadav B. S., Ritika. Resistant Starch: Physiological Roles and Food Applications. Food Reviews International. 2008;24:193-234.
[5] Hizukuri S., Takeda Y., Yasuda M., Suzuki A. Multibranched nature of amylose and the action of debranching enzymes. Carbohydrate Research. 1981;94:205-213.

延伸閱讀