透過您的圖書館登入
IP:18.191.74.239
  • 學位論文

應用歸零原理和極化對比技術之影像式波導共振生物感測器

Application of Nulling Theory and Polarization Contrast for Imaging Type Guided-Mode Resonance Biosensor

指導教授 : 張正陽
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究在研發一新型影像式波導共振生物感測器。隨著科技的發展,人們越來越注重疾病的預防,也是生物感測器越來越蓬勃發展的主要原因。從早期的一維單點量測生物感測器慢慢演化至現在二維多點影像式生物感測器,中間的技術不斷的進步及突破。其中又以光學式的生物感測器較為容易達到影像式生物感測器的目標。本研究以波導共振生物感測器為基礎,加上極化對比技術和歸零原理技術設計出高對比度低雜訊的即時偵測影像式生物感測器,並且可針對不同的待測物來調整感測範圍。   波導共振元件本身具有濾波的性質,除了在特定的共振波長下使穿透元件之光的穿透率為零,也會使穿透光的相位產生變化。因此當光通過此元件時會有偏振態的改變,再配合了歸零原理利用偏振片架構來改變穿透元件之穿透光的偏振態達到歸零的效果。最後利用極化對比技術降低CCD成像雜訊。本研究其理想檢測極限為4.865×10-5 RIU,線性檢測區間為1.339 RIU至1.3342 RIU。實際檢測極限達到1.008×10-4 RIU,線性檢測區間為1.336 RIU至1.3340 RIU,此系統可量測折射率1.33至1.365的鹽水,並且可藉由調整GMR共振波長,配合不同折射率的待測物設計最佳檢測曲線。

並列摘要


In this thesis we develop a novel imaging type guided-mode resonance (GMR) biosensor. In the past few decades, biosensor was developed quickly and successfully. There are many different types of biosensors such as electrochemical biosensor, optical biosensor, and biocatalytic biosensor. Especially in optical biosensor, the imaging type biosensors such as multi-point imaging biosensor was developed rapidly because it offers the properties of quantitative bimolecular information and it is useful for direct visualization of cell behavior.   This thesis is based on GMR biosensor and combining polarization contrast with nulling theory for designing the high-contrast and low-noise real-time imaging biosensor system. The system can also be designed different sensing area for different objects. The ideal limit of detection (LOD) of this system is 4.865×10-5 RIU and the linear operating range is from 1.339 RIU to1.3342 RIU. The actual LOD of the system is 1.008×10-4 RIU and the linear operating area from 1.336 RIU to1.3340RIU. The sensing range of this system is from 1.330 RIU to 1.365 RIU; moreover, the sensitivity can be designable for different objects by modulating the resonated wavelength of GMR.

並列關鍵字

biosensor GMR nulling theory polarization contrast

參考文獻


[18] S. J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou, and Y. K. Chen, "Surface plasmon resonance phase-shift interferometry: Real-time DNA microarray hybridization analysis," Journal of Biomedical Optics 10 (2005).
[34] S. J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou, and Y. K. Chen, "Surface plasmon resonance phase-shift interferometry: Real-time DNA microarray hybridization analysis," Journal of Biomedical Optics 10 (2005).
[3] M. Belz, W. J. O. Boyle, K. F. Klein, and K. T. V. Grattan, "Smart-sensor approach for a fibre-optic-based residual chlorine monitor," Sensor Actuat B-Chem 39, 380-385 (1997).
[4] Y. S. Lee, D. S. Yoon, and T. S. Kim, "Improvement of the mass sensitivity in flexural plate wave biosensor based on PZT thin film," Integr Ferroelectr 69, 391-+ (2005).
[5] T. S. Kim, G. Y. Kang, G. Y. Han, J. Y. Kang, I. H. Cho, H. H. Park, and S. H. Paek, "Label-free protein assay with site-directly immobilized antibody using self-actuating PZT cantilever," Sensor Actuat B-Chem 117, 332-338 (2006).

延伸閱讀