透過您的圖書館登入
IP:3.137.178.133
  • 學位論文

最佳化設計於結構被動控制之應用

Applications of Optimization Method for the Design of Passive Control Device Used in Structures

指導教授 : 莊德興
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


摘 要 本研究主要探討結構物中配置線性黏滯阻尼器之最佳化設計問題,並針對不等高橋墩隔震橋梁及平面鋼骨抗彎構架進行研究,其中不等高橋墩橋梁是以阻尼器的阻尼係數和墩柱支承勁度為設計參數,並經由最佳化方法找出阻尼器與支承勁度的配置方式來達到最佳減振效果;平面鋼骨抗彎構架則以阻尼器的阻尼係數和配置位置為設計參數,藉由最佳化方法來決定阻尼器的配置方式,期可有效降低目標結構之受震反應。 研究中,將橋梁結構簡化為集中質量系統,並建立其運動方程式,再透過直接積分法分析受震歷時反應;鋼骨構架則採用向量式有限元素法(VFIFE)作為分析工具,求得目標建築之受震反應。設計過程均採用混合粒子群演算法及模擬退火法之 PSO-SA搜尋法來求得最佳設計變數的組合,使目標結構之受震反應最小化。 經由數個設計案例的結果可發現,不論是遠域震波或近域震波,透過最佳化設計法均可找到適合的設計參數,使目標結構之受震反應有效地降低。文末亦將針對設計結果探討遠域震波與近域震波下阻尼器配置的差異性與減振效益。

並列摘要


The purpose of this research is aimed to find the optimal capacity and location of viscous dampers installed in structures for mitigating seismic response of the structures. There are two different type of structural systems are considered in this research. One of them is the isolated bridge with columns of irregular height, and the other is a planar steel moment resisting frame. For the isolated bridge, the design variables are the capacity of viscous dampers and the stiffness of bearings. For the planar moment resisting frame, the design variables are the capacity of dampers and the nodal coordinates of the two ends of each damper where it will be installed. To minimize the seismic responses of structures, a PSO-SA (Particle Swarm Optimization-Simulated Annealing) hybrid searching algorithm is employed to explore the optimal design variables. The analytical model for the bridge structure is simplified as a lumped mass system and the behaviors of columns and bearing are both considered as bilinear. The direct integration method is then used to analyze the seismic responses of the bridge. For the moment resisting frame, the vector form intrinsic finite element method (VFIFE) is employed to analyze the seismic responses. The numerical results clearly show that the PSO-SA hybrid algorithm can successfully find the optimal design variables for effectively minimizing the responses of the bridge structure and the moment resisting frame under either near field and far field seismic excitations. Parametric studies on the influences of optimal solutions for near field and far field seismic excitations are also discussed in the report.

參考文獻


[27] Wang, X.Y., Ni, Y.Q., Ko, J.M. and Chen, Z.Q. (2005), “Optimal design of viscous dampers for multi-mode vibration control of bridge cables,” Engineering Structures, Vol. 27, pp. 792-800.
[1] Agrawal, A.K. and Yang J.N. (1999), “Optimal Placement of Passive Dampers on Seismic and Wind-excited Buildings Using Combinatorial Optimization,” Journal of Intelligent Material Systems and Structures, Vol. 10, pp 997-1014.
[2] AL-Kazemi, B., and Mohan, C. K. (2002), “Multi-Phase Generalization of the Particle Swarm Optimization Algorithm,” Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 1, pp. 489?494.
[3] Aydin, E., Boduroglu, M.H. and Guney, D.(2007), “Optimal Damper Distribution for Seismic Rehabilitation of Planar Building Structures,” Engineering Structures, Vol 29, pp 176-185.
[4] Bishop, J.A. and Striz, A.G. (2004), “On Using Genetic Algorithms for Optimum Damper Placement in Space Trusses,” Struct Multidisc Optim, Vol 28, pp.136-145.

延伸閱讀