透過您的圖書館登入
IP:18.222.86.149
  • 學位論文

超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究

Very high speed (>1Gb/s) visible LED applied for Plastic Optical Fiber communication and investigation of the internal carrier dynamic

指導教授 : 許晉瑋
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本篇論文分為兩大主題,主題一是高速發光二極體應用於塑膠光纖通訊;主題二為紅光發光二極體內部載子動力學的研究。我們展示了新的藍綠光發光二極體其中心波長為500nm,使用圖案化藍寶石為基板作為塑膠光纖通訊的光源。為了增加外部量子效率和輸出功率於此極小尺寸的高速發光二極體,我們採用了圖案化藍寶石為基板。此外,藉由減少主動層InxGa1-xN/GaN量子井的數量和縮小元件發光區域,我們可以得到極高速的電光轉換頻寬(可高達400MHz)於所有高速可見光發光二極體中,並只需一個非常小的直流偏壓電流(40mA)。藉由金屬封裝transistor out-line can (TO-can)整合一個直徑500?m透鏡,會有~4dBm功率的提升從晶片到塑膠光纖,量到的功率高達-2.67dBm在40mA偏壓電流下。超高速無誤的資料傳輸速度(1.07Gbps)在50公尺塑膠光纖已成功的被展示。此外,利用向前錯誤更正(FEC)技術後,已經可於低電流40mA下達到。 此外,為了研究紅光發光二極體(AlGaP-based)的內部載子動力學,我們開發了新穎的Electrical-Optical pump-probe方法。透過直接注入短脈衝電信號激發,此方法可以直觀地得到樣本的光響應波形,以分析其原始的載子動力學。以此方法分析我們的新元件,量測結果顯示,光響應的波形在不同的偏壓電流下是不變的,溫度從室溫到100度。此結果與大多數AlGaP-based紅光LED的研究結果是相反的。由此我們確認了所觀測到的高電流下效率衰退(efficiency droop)現象的主要原因並不是由熱效應引發載子溢出,而是在低偏壓電流下歸因於缺陷的再復合;在高偏壓電流下歸因於缺陷的飽和與自發性複合機制。

並列摘要


We demonstrate the performance of a novel cyan light-emitting diode (LED) on a patterned sapphire (PS) substrate as a light source for plastic optical fiber (POF) communications with the central wavelength at 500 nm. To further enhance the external quantum efficiency (EQE) and output power of this miniaturized high-speed LED, an LED with a PS substrate is adopted. Furthermore, by greatly reducing the number of active InxGa1-xN/GaN multiple quantum wells (MQWs) to three and minimizing the device active area, we can achieve a record high electrical-to-optical (E-O) bandwidth (as high as 400 MHz) among all the reported high-speed visible LEDs under a very-small DC bias current (40 mA). By use of the transistor out-line can (TO-can) package integrated with a lens (500 ?m diameter), a ~4 dB enhancement in coupled optical power from chip to POF and a measured power as high as -2.67 dBm under 40 mA bias current can be achieved.Very-high error-free 1.07 Gbps data transmission over a 50 m POF fiber has been successfully demonstrated using this device under a bias current of 40 mA with forward error correction (FEC) technique The mechanism responsible for the efficiency droop in AlGaInP-based vertically structured red light-emitting diodes (LEDs) is investigated using dynamic measurement techniques. Short electrical pulses ( 100 ps) are pumped into this device and the output optical pulses probed using high-speed photoreceiver circuits. From this, the internal carrier dynamic inside the device can be investigated by use of the measured electrical-to-optical (E-O) impulse responses. Results show that the E-O responses measured under different bias currents are all invariant from room temperature to 100 C. This is contrary to most results reported for AlGaInP-based red LEDs, which usually exhibit a shortening in the response time and degradation in output power with the increase of ambient temperature. According to the extracted fall-time constants of the E-O impulse responses, the origin of the efficiency droop in our vertical LED structure, which has good heat-sinking, is not due to thermally induced carrier leakage, but rather should be attributed to defect recombination and the saturation of defect/spontaneous recombination processes under low and high bias current, respectively.

參考文獻


[3] R. Wirth, B. Mayer, S. Kugler, and K. Streubel, “Fast LEDs for polymer optical fiber communication at 650nm,” Proc. of SPIE, vol. 6013, pp.60130F, SPIE, Bellingham, WA, 2005.
[5] P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, “81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett., vol. 98, no. 23, p. 231106, Jun. 2011.
[6] J.-W. Shi, W.-C. Weng, F.-M. Kuo, Ying-Jay Yang, S. Pinches, M. Geen, A. Joel, “High-Performance Zn-Diffusion 850-nm Vertical-Cavity Surface-Emitting Lasers With Strained InAlGaAs Multiple Quantum Wells,” IEEE Photonics Journal, vol. 2, no. 6, pp. 960-966, Dec., 2010.
[8] K. Kurata, “High-Speed Optical Transceiver and Systems for Optical Interconnects,” Proc. OFC 2010, San Diego, CA, USA, March, 2010, pp. OThS3.
[10] M. Akhter, P. Maaskant, B. Roycroft, B. Corbett, P. de Mierry, B. Beaumont and K. Panzer, “200Mbit/s data transmission through 100m of plastic fiber with nitride LEDs,” Electron. Lett., vol. 38, pp.1457-1458, Nov., 2002.

延伸閱讀