透過您的圖書館登入
IP:18.118.164.151
  • 學位論文

(Ag-In-Zn)S固態溶液光催化效率提升研究

Enhancement of Photocatalytic Activity of Silver-Indium-Zinc Sulfide Solid Solutions

指導教授 : 李元堯 李岱洲
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


能源與溫室效應為21世紀最重要的挑戰,而無污染物排放問題的氫能源則成為取代石化燃料的最佳替代能源,這也使得發展可見光光觸媒來分解水產生氫氣之研究變得相當必要。文獻報導(Ag-In-Zn)S固態溶液具有高產氫效率(7.37 µmol/cm2•h),且可藉由調整[Zn]/[Ag]比例將其吸收波長在紫外光與可見光之間調整。 本研究進一步的改變固態溶液中的銦含量來提升光化學活性。藉由小幅度的改變[In]/[Ag]比例可以使(Ag-In-Zn)S光觸媒之產氫效率有顯著的改善,與[In]/[Ag]=1的固態溶液相比,產氫效率最高可提升3倍。從SEM圖可發現,當改變[In]/[Ag]比例時,固態溶液表面的階梯結構數量也會跟著改變,而這些階梯結構的邊緣為光觸媒的活性點,有利於電子電洞的分離進而提升光轉換效率。固態溶液中的另一成分,鋅,可用來控制能隙值,藉由調整銦與鋅的比例,我們可得到最佳的產氫效率(17.26 µmol/cm2•h)。 根據反應動力學可知,提升溫度有助於提升水解反應效率,因此在另一部分的實驗中,我們將提升溫度來進行光催化反應。調整核殼結構奈米粒子(Ag@Au)的外層奈米殼(Au)厚度可將其吸收波段從可見光移至紅外光。吸收波段落於紅外光附近的奈米粒子(>700 nm)可將太陽能轉換為熱能,在我們的可見光光觸媒系統內,此獨特的性質提供我們能一個可以更有效利用太陽光的方法。然而,此核殼結構奈米粒子的吸收波段過於寬廣,與一部分的可見光波段相重疊,因此減低了金屬硫化物光觸媒的效率,未來若能在核殼結構奈米粒子外層包覆(Ag-In-Zn)S固態溶液,其產氫效率將更進一步的提升。

並列摘要


The energy and greenhouse effect are big challenges of 21st century. Hydrogen is the most promising replacement for fossil fuels without any pollutant emission. The development of visible-light-driven photocatalysts for water splitting is critical. The (Ag-In-Zn)S solid solution has a high activity with a hydrogen evolution rate of 7.37 µmol/cm2•h and its absorption can be tuned from UV light to visible light by adjusting [Zn]/[Ag] ratio. In this study, we further extended the investigation, changed the amount of indium in a series of solid solutions, and increased the photochemical activity substantially. With little adjustment of the ratios of [In]/[Ag], the hydrogen production rate of the photocatalysts, (Ag-In-Zn)S, are significantly improved. The most enhancement of the activity can go up to three times, compared to the photocatalyst of [In]/[Ag]=1. SEM images show that different amount of nanosteps on the surface related to the ratios of [In]/[Ag]. These edges of nanosteps are considered as the active sites that facilitates the electron-hole separation, leading to higher solar-to-fuel conversion efficiency. The other ingredient, zinc, is used to control the band gap. With both variations in indium and zinc, the highest efficiency of this photocatalyst is 17.26 µmol/cm2•h. According to reaction kinetics, the water splitting reaction rate increases with temperature. In a separate experiment, the photocatalystic reactions were carried out at elevated temperatures. The absorption of core-shell nanoparticles (Ag@Au) can be adjusted systematically from visible light to IR range by altering the thickness of nanoshell (Au). The nanoparticles have an absorption edge in the IR range (>700 nm), which can convert the solar energy to heat. This unique property provides us a way to further utilize solar energy in the system of our visible-light-driven photocatalysts. However, the broad absorption of core-shell also covered the visible-light region, which decrease the efficiency of the metal sulfide photocatalysts. If the core-shell nanoparticles can be covered with (Ag-In-Zn)S solid solution, the efficiency of hydrogen production will be further raised in the future.

參考文獻


2. Turner, J.A., 1999, "A Realizable Renewable Energy Future", Science, 285, No. 5428, 687.
3. Walker, G.R. and P.C. Sernia, 2004, "Cascaded DC-DC Converter Connection of Photovoltaic Modules", IEEE Transactions On Power Electronics, 19, No. 4, 1130-1139.
4. Kogan, A., 2000, "Direct Solar Thermal Splitting of Water and On-site Separation of The Products — IV. Development of Porous Ceramic Membranes for a Solar Thermal Water-splitting Reactor", Int. J. Hydrogen Energy, 25, No. 11, 1043-1050.
5. Fujishima, A. and K. Honda, 1972, "Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, 238, No. 5358, 37-8.
6. Kawai, T. and T. Sakata, 1980, "Conversion of Carbohydrate into Hydrogen Fuel by a Photocatalytic Process", Nature, 286, No. 5772, 474-476.

被引用紀錄


林伯璋(2013)。ZnS的低溫相轉移與Ag-In-Zn-S固態溶液的光化學性質〔博士論文,國立中正大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0033-2110201613551621

延伸閱讀