透過您的圖書館登入
IP:3.16.67.54
  • 學位論文

應用增廣的有限元素/無限元素結合的數值方法探討膝關節囊褶襯接觸軟骨所造成之內部應力分佈之研究

An Enhanced Finite Element Method/Infinite Element Method to Study the Stress in the Cartilage of Knee Joint by Plica

指導教授 : 劉德騏
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


由長期的關節鏡手術觀察中得知,關節囊褶襯(Plica)產生纖維化後會導致關節軟骨衰退或損壞,進而造成退化性關節炎。本研究的目的乃藉由電腦模擬分析探討Plica對軟骨之影響。首先建立Plica之材料性質測試實驗,由測試結果可知,在第一次的載荷中,材料將顯示出達到最大的剛性,而第二次的載荷則明顯呈現出遲滯區的縮減,最後會趨於一穩定曲線,而後將此穩定之Plica材料參數導入到動態膝關節模型分析中,來觀察 Plica組織對膝關節軟骨表面造成之壓力值。最後,本研究將利用三維異質無限元素法來建立多層軟骨,並結合動態有限元素法,分析關節軟骨受到壓力後,其三層材料軟骨內部所承受的應力,藉以探討不同類型之Plica對多層軟骨造成的應力分佈狀況與病變的關係。由分析結果可知,第B型之Plica對軟骨所受之應力較大(6.5 MPa),其細胞壞死機率也相對提高,此與臨床觀察到軟骨損壞的現象相符。

並列摘要


Learned from long-term observation of arthroscopic surgery, the fibrosis produce by Plica will lead to recession or damage to the articular cartilage and cause osteoarthritis. The purpose of this study is to build up dynamic simulation model and established multi-layer cartilage model by infinite element method, in order to simulate plica rubbed against articular cartilage. First building a cyclic Plica material properties test experiments, and use the result as Plica's material parameters to import dynamic knee model, then using the three-dimensional heterogeneous infinite element method to establish a multi-material cartilage, and combined with the dynamic finite element method analysis of Articular cartilage under pressure, the stress of its three-layer material cartilage internal, in order to explore the different types of Plica multilayer cartilage caused by the stress distribution of the relationship between the condition and the lesions. From the analytic results, the B-type Plica suffered the stress (6.5 MPa), the probability of cell necrosis relative to this phenomenon consistent with clinical observations to cartilage damage.

參考文獻


[3]康莊敬, 張志涵 楊俊佑, “定位及超高分子量聚乙烯層厚度對全人工膝關節置換術之生物力學探討.” 國立成功大學醫學工程研究所, 2002.
[4]Akizuki, S., Mow, V. C., Müller, F., Pita, J. C., Howell, D. S., and Manicourt, D. H., “Tensile Properties of Human Knee Joint Carti-lage: Ι. Influence of Ionic Conditions, Weight Bearing, and Fibril-lation on the Tensile Modulus,” Jouranl of Orthopaedic Research 4: 379-392, 1986.
[5]Aspden, R. M., “A Model for the Function and Failure of the Me-niscus,” Eng. Med. 14: 119-122, 1985.
[7]Schreppers, G. J. M. A., Sauren, A. A. H. J., and Huson, A., “A Numerical Model of the Load Transmission in the Tibio-Femoral Contact Area,” Journal of Engineering in Medicine 204: 53-59, 1990.
[8]Perie, D., and Hobatho, M. C., “In Vivo Determination of Contact Areas and Pressure of the Femorotibial Joint Using Non-Linear Finite Element Analysis,” Clin. Biomech. 13: 394-402, 1998.

延伸閱讀