透過您的圖書館登入
IP:3.145.191.169
  • 學位論文

質子交換膜燃料電池內部反應溫度之量測與研究

Measurement and Study on the Internal Reaction Temperature of Proton Exchange Membrane Fuel Cells

指導教授 : 陳永松
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


燃料電池在進行電化學反應時,產生了電與熱,其中熱能對電化學反應有著相互的影響,反應溫度的提高會影響到活化能的大小,增加流體的擴散係數、濃度遞補速度,給燃料電池帶來活性,並減少過電位損失,但也伴隨著多餘熱能無法使用而浪費能量利用率,因此對燃料電池而言,反應溫度是個很重要的影響因素。 由於電化學反應是在內部進行,在溫度的量測上卻大多是在電池外部進行,中間會因為電池組件材料傳導而有所誤差,我們希望能藉由設計實驗來得到燃料電池在運作時精確的燃料電池內部之反應溫度,並藉由討論隨著長時間、不同的操作條件,得到最後達到穩定時的溫度,討論不同操作條件下對溫度的交互影響因素,並藉由建立質子交換膜燃料電池溫度與熱傳遞的數學模型,來研究燃料電池內部溫度分佈的情形與水傳遞到陰、陽極比例的影響,分析燃料電池內部溫度變化趨勢並與性能曲線做比較,來討論內部溫度的變化。 本實驗以微型熱敏電阻式溫度感測器通過實驗設計的石墨板鑽孔,裝置於接近氣體擴散層的流道肋條位置,來量測質子交換膜燃料電池內部的多點溫度;希望藉由這種實驗方法來得到精準的燃料電池反應溫度,並與燃料電池數值溫度模擬模型做比對,找到質子交換膜燃料電池在電化學反應達到穩態時,內部質子交換膜的溫度。

並列摘要


The performance of a proton exchange membrane fuel cell (PEMFC) system depends on its operating conditions and fuel utilization. There are many factors that influence the performance of a PEMFC, including gas channel design, membrane and catalyst ingredient, operating temperature, stoichiometric ratio. Among these factors, temperature is a key factor that affects both water and heat managements. However, measuring the internal temperature of a PEMFC is not easy because embedded sensors could interfere the working environment of fuel cells, resulting in lower performance of fuel cells. In order to estimate the reaction temperature of inside the fuel cell, in this study, miniature thermistors are embedded in the land areas and in contact with the gas diffusion layers (GDLs). Thermistors are placed at the inlet, midway, and outlet of the flow channel to capture the temperature variation along flow direction. In order to estimate the temperature at the catalyst layer, a model was developed employing the first law of thermodynamics accompanying operating conditions and measured data.

參考文獻


[1] N. V. Long, C. M. Thi, M. Nogami, and M. Ohtaki, “Novel Pt and Pd Based Core-Shell Catalysts with Critical New Issues of Heat Treatment , Stability and Durability for Proton Exchange Membrane Fuel Cells and Direct Methanol Fuel Cells,” 2012.
[2] J. Wu, X. Ziyuan, H. Wang, M. Blanco, J. Martin, and J. Zhang, “Diagnostic tools in PEM fuel cell research: Part IIPhysical/chemical methods,” International Journal of Hydrogen Energy, vol. 33, no. 6, pp. 1747–1757, Mar. 2008.
[4] J. Zhang, PEM Fuel Cell Electrocatalysts and Catalyst Layers - Fundamentals and Applications. Springer, 2008.
[5] M.-H. Chang and C.-H. Cheng, “Non-destructive inverse method for determination of irregular internal temperature distribution in PEMFCs,” Journal of Power Sources, vol. 142, no. 1–2, pp. 200–210, Mar. 2005.
[6] P. J. S. Vie and S. Kjelstrup, “Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell,” Electrochimica Acta, vol. 49, no. 7, pp. 1069–1077, Mar. 2004.

延伸閱讀