透過您的圖書館登入
IP:3.15.218.254
  • 學位論文

利用CMOS-MEMS製程設計之微波關鍵電路

Design of CMOS-MEMS Microwave Key Circuits

指導教授 : 張嘉展
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


摘要 本論文使用了TSMC 與UMC CMOS微機電製程實現二階可調頻帶槽孔天線、多階可調頻帶槽孔天線、類威爾金森反射式相移器及壓控振盪器。承襲之前之研究經驗,使用微機電指叉式可變電容與上述之微波電路整合,以期改進各電路之特性。 第二章主要包括了兩個電路,分別為二階可調頻帶槽孔天線與多階可調頻帶槽孔天線,主要設計概念為於槽孔中心置入CMOS MEMS可變電容,藉由改變其電容值,來達到切換頻帶之目的,第一個電路使用使用了一字型槽孔,主要目的為提升天線之增益,然而,由於受到矽基板之波引效應引響,效果不彰,其實測可切換頻帶為57.9 GHz 與52 GHz,57.9 GHz之增益為 -8.4 dBi;第二個電路為類領結式槽孔天線,由於其本身擁有寬頻之特性,故期望此架構能夠改善切換頻帶時天線之增益變化量,其實測可切換頻帶為43 GHz、45.5 GHz、46.5 GHz、47.8 GHz與56 GHz,共五個頻帶,其頻帶內之增益範圍為-10 dBi ~ -16.2dBi。 第三章為類威爾金森反射式相移器,本團隊已發表一具有三個切換狀態之反射式相移器,本電路實現於umc cmos微機電製程,結合威爾金森功率分配器與微機電可變電容,並於指叉電容中間置入一開路殘段,藉此可使致動狀態增加為九個,以期達到較大之相位調控範圍,其模擬之相位調控範圍於65 ghZ 時為 ,由於其中有兩組切換狀態相位重疊,其可切換狀態為七個。 第四章為V頻帶微機電壓控振盪器,採用已實現於V頻帶之壓控振盪器架構[53],將微機電可變電容置如其LC諧振腔中,以期達到較大頻率調控範圍與改善其相位雜訊特性表現,其模擬之頻率調控範圍為52.1~53.9 GHz,輸出功率大於 -8.8 dBm,相位雜訊為-100 dBc/Hz於1 MHz offset。

並列摘要


Abstract In this thesis, two frequency-tunable slot antennas, a power divider-based reflection-type phase shifter and a voltage-controlled oscillator have been designed using TSMC and UMC CMOS-MEMS processes. Chapter two introduces two frequency-tunable slot antennas. The CMOS MEMS varactor is placed across the slot radiator so that the resonant frequency of the antenna can be changed by varying the varactor capacitance. The first antenna uses the I-type slot structure to enhance the antenna gain. The measurement shows that the slot antenna is able to operate at 57.9 GHz and 52 GHz, where the antenna gain at 57.9 GHz is -8.4 dBi. In second design, the bowtie slot antenna is chosen to reduce the gain variation during the band switching. The measurements show that this proposed slot antenna has five operation bands, 43 GHz, 45.5 GHz, 46.5 GHz, 47.8 GHz and 56 GHz with antenna gain from -10 dBi ~ -16.2 dBi . In chapter three, we design a power divider-based reflection-type phase shifter. The circuit consists of a Wilkinson power divider loaded with a MEMS varactor to produce nine switching states ,resulting in larger phase tuning range. The UMC process will be adapted for fabrication in this design. The simulation predicts that phase tuning-range at 65 GHz is with seven switching states. In chapter four, we design a V-band VCO by integrating the MEMS varactor into the LC-tank. It not only enlarges the frequency tuning range but also improves the phase noise. The simulation results show that the frequency tuning range is 52.1 GHz ~ 53.9 GHz, output power is better than -8.8 dBm and phase noise is -100 dBc/Hz at 1-MHz offset.

參考文獻


[32] The CIC CMOS MEMS design platform for heterogeneous integration, Chip Implementation Center, CIC, Taiwan, Document no. CIC-CID-RD-08-01, 2008.
[2] K. Van Caekenberghe, "RF MEMS on the radar," Microwave Magazine,IEEE, vol. 10, pp. 99-116, 2009.
[3] R. R. Mansour,"RF MEMS-CMOS Device Integration: An Overview of the Potential for RF Researchers," Microwave Magazine,IEEE,vol.14, pp. 39-56, Jan.-Feb., 2013
[5] J. Lee; C.H. Je; S. Kang and C.A. Choi, "A low-loss single-pole six-throw switch based on compact RF MEMS switches," IEEE Trans. Microw. Theory Tech., vol.53, no.11, pp.3335-3344, Nov. 2005
[6] M.Daneshmand, S. Fouladi, R.R. Mansour, M. Lisi and T. Stajcer, "Thermally Actuated Latching RF MEMS Switch and Its Characteristics," IEEE Trans. Microw. Theory Tech., vol.57, no.12, pp.3229,3238, Dec. 2009.

被引用紀錄


呂昱廷(2016)。應用於RF前端電路之可重置技術〔碩士論文,國立中正大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0033-2110201614071108

延伸閱讀