透過您的圖書館登入
IP:18.220.65.61
  • 學位論文

整合電腦視覺與電磁技術之手術器械三維定位及追蹤系統

Integration of Optical and Electromagnetic Techniques for Real-time Instrument Localization

指導教授 : 王民良 林惠勇
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來,微創手術的發展越來越受到重視,比起傳統的手術方式更受到病人的青睞。雖然微創手術擁有許多好處,但其創口小的特點也造成了醫生對於手術部位的可視範圍縮小,因此我們需要透過一些輔助工具來協助醫生進行手術的運作,其中,手術器械追蹤系統便是用來幫助判斷手術器械與手術部位的位置關係。為了彌補不同的追蹤技術各自的缺點,在這篇論文中,我們結合了兩種廣泛受到使用的手術器械定位與追蹤的技術:光學定位與電磁定位,並且提出一種改良式的標記物來取代一般光學定位中使用的標記物,此種新型的標記物可以在最多50%的面積遭到遮蔽的情況依舊正常運作,藉此降低光學定位中,標記物與相機之間不能受到阻擋的限制。另外,我們採用了兩種感測器融合的方式來混和從兩種追蹤系統所得到的測量結果,使我們的定位追蹤結果更加的穩定,降低突發的雜訊干擾。

關鍵字

手術器械 微創手術

並列摘要


Minimally invasive surgery has been more and more favored than traditional open surgery by patients for its benefits. However, there are some problems for minimally invasive surgery: the surgeons can not see and feel the anatomical structures directly as they used to in open surgery due to the small incision. So the instrument tracking systems are used as assistant tools for surgeons to perform an operation. In this thesis, we propose an improved marker for optical tracking system. This marker is called IR pattern and can accept up to 50% of occlusion so that we can reduce the requirement of line-of-sight during the procedure of instrument tracking. For the purpose of providing accurate instrument tracking results to help the surgeons manipulating minimally invasive surgery, we integrate both optical tracking and electromagnetic tracking methods into an image guided surgery system. Furthermore, in order to make the measurement of the system more stable and remove the noises from the environment, we use a sensor fusion algorithm to fuse the measurements from these subsystems.

並列關鍵字

minimal invasive surgery instrument

參考文獻


[2] H.-H. Lin, C.-C. Tsai, and J.-C. Hsu, “Ultrasonic localization and pose tracking of an autonomous mobile robot via fuzzy adaptive extended information filtering,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 9, pp. 2024–2034, 2008.
[3] M. Rea, D. McRobbie, H. Elhawary, Z. T. H. Tse, M. Lampérth, and I. Young, “System for 3-d real-time tracking of mri-compatible devices by image processing,” IEEE/ASME Transactions on Mechatronics, vol. 13, no. 3, pp. 379–382, 2008.
[4] A. I. Comport, E. Marchand, M. Pressigout, and F. Chaumette, “Real-time markerless tracking for augmented reality: the virtual visual servoing framework,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 4, pp. 615–628, 2006.
[6] C. Meskers, H. Vermeulen, J. De Groot, F. Van der Helm, and P. Rozing, “3d shoulder position measurements using a six-degree-of-freedom electromagnetic tracking device,” Clinical Biomechanics, vol. 13, no. 4, pp. 280–292, 1998. BIBLIOGRAPHY 54
[7] J. Fernandez-Madrigal, E. Cruz-Martin, J. Gonzalez, C. Galindo, and J. Blanco, “Application of uwb and gps technologies for vehicle localization in combined indoor-outdoor environments,” in 9th International Symposium on Signal Processing and Its Applications, 2007. ISSPA 2007., pp. 1–4, IEEE, 2007.

延伸閱讀