透過您的圖書館登入
IP:3.21.162.87
  • 學位論文

以水熱法製備P-N型氧化亞銅/氧化鋅奈米柱之研究

The Research of p-Cu2O/n-ZnO nanorod fabricated by hydrothermal method

指導教授 : 王祥辰
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究是使用水熱法製備出由p型氧化亞銅薄膜和n型氧化鋅奈米柱陣列所組成的結構。在本研究中,我們利用水熱法研究不同的製程參數如晶種層、溶液濃度、成長溫度、成長時間和摻雜鎵對於氧化鋅奈米柱型態之間的關係。而我們找出可成長整齊排列氧化鋅奈米柱陣列的製程參數為有氧化鋅晶種層的ITO基板、溶液濃度為0.2M、成長溫度為80℃和成長時間為4小時。接下來我們使用水熱法在最佳的氧化鋅奈米柱陣列上成長氧化亞銅薄膜,找出不同成長溫度與氧化亞銅薄膜之間的關係,其結果顯示在成長溫度為120℃下成長氧化亞銅薄膜為最佳p型氧化亞銅/n型氧化鋅奈米柱陣列的結構。

並列摘要


The heterojunction composed of p-type Cu2O film and n-type ZnO nanorod arrays was fabricated by using hydrothermal method. In this study, well-aligned ZnO nanorod arrays were prepared on substrates by hydrothermal growth under different conditions. The effect of preparing conditions on the deposition of ZnO nanorods was systematically studied. It is demonstrated that the growth conditions such as pretreatment of the substrates, concentration of growth solutions, growth temperature, growth time and Ga doping level have great influence on the morphology and the alignment ordering of ZnO nanorod arrays. We find that hydrothermal method can grow well-aligned ZnO nanorod arrays data is concentration of growth solutions of 0.2M, growth temperature of 80℃and growth time of 4 hour. Cu2O film was fabricated on well-aligned ZnO nanorod arrays by using hydrothermal method. We find the relationship between growth temperature and Cu2O film. The result shows that p-type Cu2O film/ n-type ZnO nanorod arrays was optimization at 120℃ by growing Cu2O film.

並列關鍵字

hydrothermal method Cu2O ZnO nanorod

參考文獻


[1]A. Marti and G.L. Araugo, “Limiting efficiencies for photovoltaics solar conversion in multigap systems,” Sol. Energ. Mat. Sol. C., 43, 203 (1996).
[3]K. P. Musselman, A. Marin, A. Wisnet, Christina Scheu, Judith L. MacManus-Driscoll, and Lukas Schmidt-Mende, “A Novel Buffering Technique for Aqueous Processing of Zinc Oxide Nanostructures and Interfaces, and Corresponding Improvement of Electrodeposited ZnO-Cu2O Photovoltaics,” Adv. Funct. Mater., 21, 573 (2011).
[4]D. G. Thomas, “The exciton spectrum of zinc oxide,” J. Phys. Chem. Solids, 15, 86 (1960).
[5]Y. Chen, D.M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization,” J. Appl. Phys., 84, 3912 (1998).
[6]R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, Y. K. Tseng, “ZnO nanopencils: Efficient field emitters,” Appl. Phys. Lett., 87, 013110 (2005).

延伸閱讀