透過您的圖書館登入
IP:216.73.216.156
  • 學位論文

基於區域目標之多重曝光影像融合

ROI-Based Fusion of Multi-Exposure Images

指導教授 : 葉經緯
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


利用多張相同場景不同曝光的影像合成單一高動態範圍(High Dynamic Range; HDR)影像的技術從1997年[4]提出至今有許多相關的技術研究,並廣泛的應用在各類消費性電子產品上。但是至今一般的顯示裝置(LCD螢幕)仍然無法直接顯示高動態範圍影像,因此需要使用色調映射(Tone mapping)的技術將HDR影像轉成一般顯示裝置可直接顯示的影像格式。 為此我們提出了不產生高動態範圍影像,而是由多張相同場景不同曝光的影像合成高品質並且可以直接在一般顯示裝置撥放的影像。我們的方法是先從多張不同曝光的影像選擇一張「最好」的影像當作「主要影像」,並將其他張影像當作「輔助影像」主要影像會大部分直接使用在最終的高品質影像,除了主要影像中「不佳」的部分,在這些部分我們會使用輔助影像來「輔助」我們得到高品質的影像結果。

並列摘要


In this thesis we propose a technique to blend multiple exposure images into a high-quality result, without generating a physically-based high dynamic range (HDR) image. This avoids physically influence like camera response curve or Bright change like flash. Our method is selecting the best image in the multiple exposure images for leading, and the other images for supportings. The leading mostly use directly in the result image expect where the ill-exposured region in leading image. In this region we fused the supportings to “support” the leading to have the high-quality result image.

參考文獻


[6]Jun Zhang, Shiqiang Hu, and Xia Dai, “Direct High Dynamic Range Imaging Method Using Experiential Optimal Exposure Criterion,” 2011 4th International Congress on Image and Signal Processing.
[7]P. Burt and T. Adelson. The Laplacian Pyramid as a Compact Image Code. IEEE Transactions on Communication, COM-31:532–540, 1983
[10]A. Goshtasby. Fusion of multi-exposured images. Image and Vision Computing, 23:611–618, 2005
[11]A. Agrawal, R. Raskar, S. K. Nayar, and Y. Li. Removing photography artifacts using gradient projection and flashexposure sampling. ACM Trans. Graph., 24(3):828–835,2005.
[14]Kuk, Jung Gap, Nam Ik Cho, and Sang Uk Lee. "High dynamic range (HDR) imaging by gradient domain fusion." Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on. IEEE, 2011.

延伸閱讀