透過您的圖書館登入
IP:18.119.17.64
  • 學位論文

1Mbps - 40Mbp人體通道傳收器設計與實現

Design and Implementation of a 1 Mbps – 40 Mbps human body channel communication transceiver

指導教授 : 鍾菁哲
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在台灣,穿戴式科技以及半導體製造技術的進步,使得可以穿戴在人體身上的裝備變得越來越小也越來越多功能。尤其是結合到生物醫學的領域中,隨著老齡化的人口比例越來越嚴重,再加上年輕人口越來越少。為了更有效率的照顧老人,所以必須改善生物醫學方面行動裝置的使用方式。透過裝置間的相互資料傳輸與統合,才能得到更精準的數據。至於裝置間資料傳輸的方法有很多種,在此我們使用最新的資料傳輸方法,也就是人體通道傳輸。而人體通道傳輸其實就是透過人體皮膚傳導訊號,來達到裝置間的溝通效果。比起傳統的有線傳輸,人體通道傳輸有著皮膚當傳輸媒介的方便性,比起傳統的無線傳輸,人體通道傳輸有著更省電及方便攜帶的好處。但是受到了人體天線效應的影響,外界的雜訊會被人體皮膚吸收,進而干擾到訊號傳導,增加了接收端資料以及時脈修復的困難度。 本論文提出了一個低硬體成本、低功率消耗、高傳輸速率與高干擾容忍度的人體通道傳收器。在傳送端部分,我們加入了展頻時脈產生器去減少對外部的電磁干擾。展頻時脈產生器是在一般的時脈產生器中加入頻率的調變,而所產生時脈訊號頻率會在一個範圍內上下擺盪,達成展開頻率的效果。比起其他抗電磁干擾的技術,展頻時脈產生器的成本便宜許多。 在傳收器的接收端前端類比放大器部分,我們使用了可調式的放大器架構來針對因為不同的傳輸長度的不同接收電壓大小的訊號進行放大。在數位電路部分,我們採用了7倍頻率超取樣時脈與資料回復電路架構,搭配選舉機制來提升修復效果。所以本論文所提出的人體通道傳收器非常適合應用在人體通道傳輸上。 本論文之晶片是以90奈米製程的標準元件庫實現,具有很好的製程移轉能力。工作範圍為1 Mb/s到40 Mb/s,晶片面積為0.2 mm2,功率消耗在40 Mb/s為1.94 mW.

並列摘要


In recent years, biomedical applications with semiconductor technologies had become more and more popular. Body area network (BAN) is one of the applications. Traditionally, there are many approaches to implement the BAN and the body channel communication (BCC) is a novel concept of the communication scheme. BCC uses the human body as the signal transmission medium to transmit physiological signals. There are many advantages of BCC than wire-less communication, such as low power consumption and easy to use. However, because of the body antenna effect, there are many external electromagnetic interferences around the human body that will interfere the reliability of the human body channel and increase the design complexity of the clock and data recovery (CDR) circuit. In this thesis, we propose a low hardware cost, low-power consumption, high-speed and large jitter tolerance wideband signaling (WBS) transceiver. At the transmitter part, we use the spread spectrum clock generator (SSCG) to reduce electromagnetic interference to the nearby devices. The SSCG performs frequency modulation on the output clock, while the generated clock frequency will be spread within a range. As compared to other anti-electromagnetic interference techniques, the cost of the SSCG is lowest. At the receiver, in the analog front end (AFE) circuit, we use an variable gain amplifier to amplify the received signal that will be different in different distance. In addition, we use a seven times oversampling CDR circuit with the vote mechanism to reduce the bit error rate with frequency drift and random jitter. Therefore, the proposed transceiver is very suitable for the human body channel communication. The test chip is implemented in TSMC 90nm standard performance CMOS process, and the proposed architecture has good portability over different processes. The core area of the test chip is 0.2 mm2, and the power consumption is 1.94 mW at 40 Mb/s.

參考文獻


[1] Body Area Networks (BAN), IEEE 802.15 WPAN™ Task Group 6, Nov. 2007 [Online]. Available: http://www.ieee802.org/15/pub/TG6. html
[2] S. Kim, J.-Y. Lee, S.-J. Song, N. Cho, and H.-J. Yoo, “An energy-efficient analog front-end circuit for a sub-1-V digital hearing chip,” IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp. 876–882, Apr. 2006.
[4] Joonsung Bae, Kiseok Song, Hyungwoo Lee, Hyunwoo Cho, and Hoi-Jun Yoo, “A Low-Energy Crystal-Less Double-FSK Sensor Node Transceiver for Wireless Body-Area Network”, IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2678–2692, Nov. 2012.
[6] S. Verma, J. Xu, M. Hamada, and T. H. Lee, “A 17-mW 0.66-mm2 direct-conversion receiver for 1-Mb/s cable replacement,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2547–2554, Dec. 2005.
[7] A. Liscidini, M. Tedeschi, and R. Castello, “A 2.4 GHz 3.6 mW 0.35 mm2 quadrature front-end RX for ZigBee and WPAN applications,” in Digest of Technical Papers, IEEE Solid-State Circuits Conference (ISSCC), pp. 370–371, Feb. 2008.

延伸閱讀