透過您的圖書館登入
IP:3.15.171.202
  • 學位論文

神經生長因子及GRGDSP/Ln5-P4胜肽修飾膠原蛋白/透明質酸/海藻酸複合水膠自組裝支架培養誘導式多能幹細胞之分化效應

Differentiation of Induced Pluripotent Stem Cells in Nerve Growth Factor-loaded GRGDSP/Ln5-P4 Peptides-Modified Collagen/Hyaluronan/Alginate Self-assembled Hydrogel Scaffold

指導教授 : 郭勇志
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究採用高含水性的天然高分子膠原蛋白(collgen, COL)、透明質酸(hyaluronan, HA)及海藻酸(alginate, ALG)為基材主要成份,製造適合包覆細胞的三維水膠微環境,並以甲基丙烯酸酐(methacrylic anhydride, MA)改質基材主要三成份,透過光交聯聚合(photocrosslinking)可快速而大量產出可控制形狀的三維水膠微粒(microgel)。水膠微粒於油水兩相系統,藉由兩相界面作用力將重複單元的水膠微粒自組裝(self-assembly),以底上(bottom-up)方式組成完整的支架。光交聯後的三維水膠微粒環境並不適合細胞生長,因此本研究以胜肽(peptide) GRGDSP及Ln5-P4接枝於高分子鏈網路(polymer network)中,提升細胞在水膠微粒中的包覆率與存活率。誘導式多能幹細胞(induced pluripotent stem cells, iPSCs)具有多能分化能力,透過神經生長因子(never growth factor, NGF)的誘導,讓誘導式多能幹細胞在水膠支架系統中朝向神經分化,形成具神經再生功能的細胞負載(cell-laden)水膠支架。由COLMA/HAMA/ALGMA孔隙度與膨潤度評估比例為1:2:1最佳,並有最佳的線性自組裝排列。支架對細胞包覆率(entrapment efficiency)與存活率(viability)的結果顯示,GRGDSP/Ln5-P4改質水膠可改善iPSCs貼附率約40%及存活率約20%。以anti-SSEA-1及anti--III tubulin進行流式細胞儀分析,Ln5-P4具有神經分化效果,搭配GRGDSP與NGF的作用更能增強分化效果,可達到約90%的神經分化。以anti-SSEA-1、anti--III tubulin及anti-NF-H觀察螢光染色影像,Ln5-P4/GRGDSP改質水膠注入NGF不但能朝像神經分化,並能看到成熟的神經細胞型態。

並列摘要


In this research, natural polymer collagen (COL), hyaluronan (HA), and alginate (ALG) are chosen as main components of substrate to manufacture a tunable three-dimensional (3D) hydrogel microenvironment for cell entrapment. Three main components modified by methacrylic anhydride (MA) and photocrosslinked to produce numerous 3D microgels immediately. Repeat unit microgels self-assemble by interface force in oilwater two phase systems and compose an integrated scaffold by bottom-up approach. However, 3D microgels are not suitable for cell entrapment and proliferation. Peptides GRGDSP and Ln5-P4 are grafted in polymer network to promote cells entrapped in microgels. Induced pluripotent stem cells (iPSCs) induced by nerve growth factor (NGF) to neuronal differentiation in hydrogel scaffold system, become a nerve regeneration cell-laden. There was an optimal component of hydrogel to swelling ratio, porosity and linear assembly composition, COLMA:HAMA:ALGMA=1:2:1. GRGDSP/Ln5-P4 modified hydrogels improved entrapment efficiency about 40% and viability and 20%. The flow-cytometric analysis against anti-SSEA-1 and anti--III tubulin indicated that Ln5-P4 could induce iPSCs to neuronal differentiation, and Ln5-P4/GRGDSP with NGF could induce neuronal differentiation to almost 90%. Immunochemical staining of iPSCs against anti-SSEA-1, anti--III tubulin, and anti-NF-H, NGF injected Ln5-P4/GRGDSP hydrogels not only induced iPSCs to neuronal differentiation, but became more matural neural cells.

參考文獻


[1] L. Ma, B. Hu, Y. Liu, S. C. Vermilyea, H. Liu, L. Gao, Y. Sun, X. Zhang, S. C. Zhang, “Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice,” Cell Stem Cell, 10, 455–464, 2012.
[2] S. Wu, Y. Suzuki, Y. Ejiri, T. Noda, H. Bai, M. Kitada, K. Kataoka, M. Ohta, H. Chou, C. Ide, “Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord,” J. Neurosci. Res.,72, 343–351, 2003.
[3] P. Johnson, S. Parker, S. Sakiyama-Elbert, “Fibrin-based tissue engineering scaffolds enhance neural fiber sprouting and delay the accumulation of reactive astrocytes at the lesion in a subacute model of spinal cord injury,” J. Biomed. Mater. Res. A, 22, 1–18, 2009.
[4] C. M. Hwang, S. Sant, M. Masaeli, N. N. Kachouie, B. Zamanian, S. H. Lee, A. Khademhosseini, “Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering,” Biofabrication, 2, 3–24, 2010.
[5] D. R. Nisbet, K. E. Crompton, M. K. Horne, D. I. Finkelstein, J. S. Forsythe, “Neural tissue engineering of the CNS using hydrogels,” J. Biomed. Mater. Res. B Appl. Biomater., 87, 251–263, 2008.

延伸閱讀