透過您的圖書館登入
IP:18.220.178.207
  • 學位論文

聚(3-己基噻吩)於甲苯及氯苯中之結構性質實驗探討

Structural Features of Regiorandom Poly(3-hexylthiophene) in Toluene and Chlorobenzene

指導教授 : 華繼中
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究利用去極化動態光散射 (DDLS)、動/靜態光散射 (DLS/SLS)、小角度X光散射 (SAXS),及穿透式電子顯微鏡 (TEM),探討區域隨機聚(3-己基噻吩) (RRa-P3HT) 於甲苯、氯苯溶劑中,及兩種不同濃度 (0.7 mg/mL、7.0 mg/mL),溶液狀態下的粒徑大小及結構特徵。經去極化動態光散射實驗所示,RRa-P3HT於兩系統中,皆未發現非均向性結構;由靜態光散射實驗解析出甲苯及氯苯系統中皆有球形結構生成,此結構特徵與上述結果吻合,且聚集體尺寸隨濃度提升而增大。動態光散射實驗部分可見,兩系統之衰退速率分佈,皆先後出現與散射向量分別呈二次方相關,以及零次方相關之波形。此外,於同一濃度下,RRa-P3HT於甲苯溶劑中生成粒徑較大的聚集體,可藉此推論對於RRa-P3HT,氯苯具較佳的溶解能力。

並列摘要


The particle size and structural feature of regiorandom P3HT (RRa-P3HT) in two solution systems, toluene and chlorobenzene, with two distinct concentrations (0.7 mg/mL and 7.0 mg/mL, respectively), were investigated by dynamic/static light scattering (DLS/SLS), depolarized dynamic light scattering (DDLS), small angle X-ray scattering (SAXS), and transmission electron microscopy (TEM) analysis. According to the SLS experiment, RRa-P3HT formed sphere-like structure in both solvents, but the aggregate size found in toluene is always larger. Results from the DDLS experiment agree with the SLS analysis, suggesting that RRa-P3HT formed isotropic structure in all solutions investigated. In the DLS analysis, the decay rate of the fast mode shows q2 dependence, while the slow mode is q0-dependent in both solution systems. Moreover, the aggregate size found in 7.0 mg/mL chlorobenzene solution is similar to that formed in 0.7 mg/mL toluene solution, which implies that solvent quality plays an important role dictating the aggregation properties of RRa-P3HT.

參考文獻


1 Sirringhaus, H., ‘‘Device Physics of Solution-Processed Organic Field-Effect Transistors,’’ Advanced Materials 17, 2411-2425 (2005).
2 Bao, Z.,Dodabalapur, A., and Lovinger, A. J., ‘‘Soluble and Processable Regioregular Poly(3‐hexylthiophene) for Thin Film Field‐Effect Transistor Applications with High Mobility,’’ Applied Physics Letters 69, 4108-4110 (1996).
3 Salleo, A., ‘‘Charge Transport in Polymeric Transistors,’’ Materials Today 10, 38-45 (2007).
5 Dennler, G.,Scharber, M. C., and Brabec, C. J., ‘‘Polymer-Fullerene Bulk-Heterojunction Solar Cells,’’ Advanced Materials 21, 1323-1338 (2009).
6 Oh, J. Y.,Jang, W. S.,Lee, T. I.,Myoung, J.-M., and Baik, H. K., ‘‘Driving Vertical Phase Separation in a Bulk-Heterojunction by Inserting a Poly(3-hexylthiophene) Layer for Highly Efficient Organic Solar Cells,’’ Applied Physics Letters 98, 023303 (2011).

延伸閱讀