透過您的圖書館登入
IP:3.15.27.232
  • 學位論文

激發態質子轉移反應之理論研究以及多層電子密度泛函理論的發展

Theoretical Study on Excited-State Proton Transfer Reactions and Development of Multi-Coefficient Density Functional Theory

指導教授 : 胡維平
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文分為三章,第一章及第二章我們分別模擬 1-hydroxy-8 -sulfanyl-2- naphthaldehyde (HSNA) 以及 1,8-dihydroxy-2,7- naphthdialdehyde (DHNDA) 分子在第一激發態質子轉移的反應機制。第三章中探討 MC-DFT 理論使用“calendar” 系列基底函數的計算表現。 第一章我們以理論計算探討 1-hydroxy-8-sulfanyl-2- naphthaldehye (HSNA) 在基態 (S0) 和第一激發態 (S1) 的質子轉移反應。在基態 (S0) 時,我們發現兩個穩定結構HSNA (N1) 以及 N2,N2 能量較 N1 低 0.54 kcal/mol。我們預測 N2 吸光位置為 410 nm,N1 吸光位置為 421 nm。我們也預測在第一激發態 (S1) 上,存在著 N2* 及 N1* 的結構,N2* 能量較 N1* 高 2.29 kcal/mol,我們並發現 N1* 雙質子轉移後的結構 T2-1*,能量上較 N1*低 10.30 kcal/mol。 我們進一步藉由由理論計算出的 2-D 位能曲面圖佐證,確認此反應在 S1 上是屬於單步 (concerted) 雙質子轉移並非逐步進行 (stepwise)。 第二章我們以理論計算探討 1,8-dihydroxy-2,7- naphthdialdehyde (DHNDA) 在基態 (S0) 和第一激發態 (S1) 的質子轉移反應。在基態 (S0 ) 時,DHNDA (NB) 與NA 皆為較穩定的結構,NB 吸光位置在 383 nm,NA 吸光位置在 396 nm與實驗上的吸收波長 ~380 nm 吻合。在激發態 (S1) 上,我們預測NA* 不存在,而NA* 經過一個質子的結構 TA1* 是存在的且放光位置在 491 nm。在經過一個質子轉移的結構 TA2*,放光位置則是在 611 nm,與實驗上所量測到的放光波長 ~650 nm 吻合。 第三章研究中我們將本實驗先前所開發的 multi-coefficient density functional theory (MC-DFT) 方法搭配 Truhlar 團隊將 Dunning-type 基底函數裡的高角動量 diffuse functions 簡化後發表“calendar”系列的基底函數 (jul-cc-pVTZ、jun-cc-pVTZ、may-cc-pVTZ) 且結合 spin-component-scaling MP2 (SCS-MP2) 理論,並額外增加 E3、E4 能量校正,並且測試211個熱力學及動力學計算的表現。我們使用 DSD-BLYP 方法搭配 aug-cc-pV(T+d)Z、jul-cc-pV(T+d)Z、jun-cc-pV(T+d)Z、may-cc-pV(T+d)Z 基底函數再加入MC-SCS-MP2 校正能量,MUE 分別為 0.83、0.83、0.84、0.86 kcal/mol,may-cc-pV(T+d)Z 的 MUE 僅高於 aug-cc-pV(T+d)Z 0.03 kcal/mol且僅需花費 aug-cc-pV(T+d)Z 的 31% 計算時間,擁有最佳的 P/C ratios。 使用 Dunning-type 基底函數簡化高角動量的 diffuse function 之“calendar” 系列的基底函數,確實能夠提高計算效率。

並列摘要


This thesis consists of three chapters. In chapters one and two, we investigated the excited state proton transfer of 1-hydroxy-8 -sulfanyl-2- naphthaldehyde (HSNA) and 1,8-dihydroxy-2,7- naphthdialdehyde (DHNDA). In chapter three, we studied the performance of the multi-coefficient density functional theory (MC-DFT) using the recently developed “calendar” series of basis sets. In chapter one, we studied the proton transfer reactions of 1-hydroxy-8 -sulfanyl-2- naphthaldehyde (HSNA) on both ground state (S0) and the lowest singlet excited state (S1). On the ground state (S0), we found two stable structures HSNA (N1) and N2. The N2 was lower in energies than N1 by 0.54 kcal/mol. We predicted that the absorption wavelengths of N1 and N2 were 410 and 421 nm respectively. On the first excited state (S1) surface, we found two stable structures N2* and N1*. The N2* was higher in energies than N1* by 2.29 kcal/mol. We predicted that the emission wavelengths of N1* and N2* were 473 nm and 447 nm. Our calculation showed that N1* can undergo a concerted double proton transfer reaction to become a tautomer T2-1* and its emission wavelength was predicted to be 704 nm. A comprehensive 2-D PES plot also confirmed the deduction. In chapter two, we studied the proton transfer reactions of 1,8-dihydroxy-2,7-naphthdialdehyde (DHNDA) on both ground state (S0) and the 1st singlet excited state (S1). On ground state (S0), we found two stable structures NB and NA. The NA was higher in energies than NB by 0.90 kcal/mol. The predicted absorption wavelengths were 396 nm for NA and 383 nm for NB. The experimentally observed absorption wavelengths (~380 nm) were almost the same as the predicted values. Our calculation also showed that the NA* is not a energy minimum on S1 surface. However the TA1* which is obtained from NA* by a single proton transfer reaction was stable on the S1 surface. A second single proton transfer reaction can then follow to generate the TA2* molecule. The predicted emission wavelengths for TA1* was 491 nm and for TA2* was 611 nm. The predicted emission wavelength of TA2* is consistent with the experimentally measured value (~650 nm). In chapter 3, we tested the performance of our multi-coefficient density functional theory (MC-DFT) on thermochemical kinetics data of 211 accurate energies using the “calendar” series of basis sets (jul-cc-pVTZ、jun-cc-pVTZ、may-cc-pVTZ). Our methods also include energy corrections at SCS-MP2 and MP4 levels. The best Performance/Cost ratios was obtained at the DSD-BLYP/ may-cc-pV(T+d)Z level including MC-SCS-MP2 correction with an MUE of 0.86 kcal/mol .

參考文獻


(2) Gelabert, R.; Moreno, M.; Lluch, J. M. J. Phys. Chem. A 2006, 110, 1145.
(4) Kwon, O.-H.; Jang, D.-J. J. Phys. Chem. A 2005, 109, 20479.
(7) Tolbert, L. M.; Solntsev, K. M. Acc. Chem. Res. 2002, 35, 19.
(8) Waluk, J. Acc. Chem. Res. 2003, 36, 832.
(9) Lin, C.-C.; Chen, C.-L.; Chung, M.-W.; Chen, Y.-J.; Chou, P.-T. J. Phys. Chem. A 2010, 114, 10412.

延伸閱讀