透過您的圖書館登入
IP:216.73.216.60
  • 學位論文

開發反射式光波導粒子電漿共振生物感測平台

Development of Reflection-Based Optical Waveguide Particle Plasmon Resonance Biosensing Platforms

指導教授 : 周禮君
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究之主要研究目的為:改良反射式管狀波導粒子電漿共振 (Reflection-based tubular waveguide particle plasmon resonance, RTW-PPR)生物感測平台,並以此作為基礎,結合實驗室所開發的光纖式粒子電漿共振(Fiber optic particle plasmon resonance, FO-PPR)生物感測平台,發展出新穎之反射式光纖粒子電漿共振(Reflection-based fiber optic particle plasmon resonance, RFO-PPR)生物感測平台。 此兩套感測平台皆是利用在貴金屬奈米粒子電漿共振(Particle Plasmon Resonance, PPR)作為感測機制,透過將貴金屬奈米粒子修飾於光波導基材表面,導入合適之粒子電漿共振波段之激發光源,藉由全內反射並產生漸逝波現象,與基材表面修飾的貴金屬奈米粒子產生粒子電漿共振,當樣品的折射率改變或是藉由貴金屬奈米粒子表面修飾上不同的生化分子,進行特異性吸附之生化反應後所產生的環境折射率變化時,電漿共振訊號將會隨之變化,利用量測光強度變化達成偵測效果。 RTW-PPR部分,藉由3-mercaptopropylsilatrane , MPS減少修飾所需要的時間,並改以塑膠管(Poly(methyl methacrylate, PMMA)作為感測元件。透過折射率實驗驗證其檢測效能,結果顯示平台對於折射率變化的感測解析度約為4.34×10-5 RIU,感測靈敏度為5.39 RIU-1。在生化檢測實驗上,利用卵白蛋白(ovalbumin, OVA)對卵白蛋白抗體(anti-OVA)進行檢測,其檢量線之迴歸係數(R2) > 0.99,偵測極限可達 4.64×10-6 g/mL (3.09×10-8 M)。 另一方面,本研究亦完成反射式光纖粒子電漿共振 (RFO-PPR)生物感測平台之初步開發。透過折射率實驗,證實球型金奈米以及棒狀金奈米等兩種感測元件,對於介電常數之變化(折射率)皆具有良好之線性關係(R2>0.99),其感測靈敏度分別為4.83 RIU-1及3.81 RIU-1,感測解析度(SR)可達到4.6×10-5 RIU及3.7×10-5 RIU。亦透過偵測多濃度anti-DNP標準品,檢測該平台對於生化分子之感測能力。結果顯示該平台對 anti-DNP 標準品之偵測極限(LOD)為8.57×10-8 g/mL (3.88×10-10 M)。 此結果成功的驗證RTW-PPR或是RFO-PPR生物感測平台的可行性,且皆具有免標定、即時偵測、體積微小化、高靈敏度等優點,期望在未來能夠進一步應用於疾病篩檢或是臨床檢驗。

並列摘要


The objectives of this work are to develop two novel multiplex chemical and biochemical sensing platforms, namly a reflection-based tubular waveguide particle plasmon resonance (RTW-PPR) biosensing platform, and a reflection-based fiber optic particle plasmon resonance (RFO-PPR) biosensing platform. The principle of inventions are based on measuring the light intensity after consecutive total internal reflections (TIRs) along a noble metal nanoparticles-modified waveguide (tube or optical fiber), wherein the evanescent wave excites the particle plasmon resonance of the nanoparticles at the reflection interface. When a noble metal nanoparticle is influenced by the change of the refractive index on its surrounding environment, its particle plasmon resonance condition will change. This phenomenon can be used as the basis of chemical and biological sensing. In the first part :we used Poly(methyl methacrylate) PMMA as waveguide material to form a tubular waveguide and utilized 3-mercaptopropylsilatrane (MPS) to reduce the modification time. A variety of experiments were carried out to validate the sensitivity and refractive index resolution of the sensing platform. Using different weight percent of sucrose in pure water as samples, a refractive index resolution of 4.34×10-5 RIU and a sensor sensitivity of 5.39 RIU-1 have been achieved by the platform. In the biochemical detection experiments, OVA was used to functionalize the gold nanoparticle in order to detect anti-OVA. Results show that the calibration curve is linear (R2>0.99) and the limit of detection (LOD) is about 4.64×10-6 g/mL (3.09×10-8 M). In the second part:the RFO-PPR platform has achieved the absorbance sensitivity of 4.83 AU/RIU-1 and the sensor resolution of 4.6×10-5 RIU by using gold nanospheres as the sensing element. By the similar configuration, but using gold nanorods as the sensing element, the absorbance sensitivity of 3.81 AU/RIU-1 and the sensor resolution of 3.7×10-5 RIU have been achieved. In the biochemical detection experiments, DNP was used to functionalize the gold nanorods in order to detect anti-DNP antibody. Results show that the calibration curve is linear (correlation coefficient >0.99) and the detection limit is less than 3.88×10-10 M.

參考文獻


1. Long, F.; Zhu, A.; Shi, H., Recent advances in optical biosensors for environmental monitoring and early warning. Sensors 2013, 13 (10), 13928-13948.
3. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B 2003, 107 (3), 668-677.
4. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
5. Sepúlveda, B.; Angelomé, P. C.; Lechuga, L. M.; Liz-Marzán, L. M., LSPR-based nanobiosensors. Nano Today 2009, 4 (3), 244-251.
7. Turkevich, J.; Stevenson, P. C.; Hillier, J., A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 1951, 11, 55-75.

延伸閱讀