透過您的圖書館登入
IP:3.148.106.159
  • 學位論文

475不銹鋼顯微結構分析

The Studies of the Microstructures of the Costom 475 Stainless Steel

指導教授 : 趙志燁

摘要


合金經970℃和1050℃固溶1小時後,其顯微結構為板狀α及殘留沃斯田鐵,溫度越高殘留沃斯田鐵含量越多,此板狀α(或稱麻田散鐵,c/a≒1)結構為體心立方結構(B.C.C.),其晶格常數為a=0.289nm,而殘留沃斯田鐵結構為面心立方結構(F.C.C.),晶格常數a=0.360nm。於-80℃/8H深冷處理後,將固溶時之殘留沃斯田鐵完全轉變為板狀α結構,此時之晶格常數為a=0.289nm。 經時效(450℃、550℃及650℃)處理,在450℃時可發現α相及沃斯田鐵相之產生,其α相之晶格常數為a=0.289nm。而在550℃和650℃時可發現L12 (Ni3Al)結構之析出物於基地內整合析出,此時之結構為板狀α與沃斯田鐵,並且有L12(面心立方結構)之析出物,其晶格常數為a=0.375nm。並且可以觀察出時效溫度550℃提高至650℃時,其Ni3Al之析出物由微粒狀轉變為顆粒狀,沃斯田鐵含量大量增加。與其他學者比較,固溶溫度提高至980-1050℃後,其B2相(NiAl)之析出物並未被發現。

並列摘要


Being solution heat treatment(SHT) on 970℃/1H or 1050/1H, and quenching room-temperature the microstructure of the alloy is the α phase and retained austenite. The higher SHT temperature would posses the higher retained austenite. This plate-α(called matensite)belong to the body-centered cubic(B.C.C.) structure with the lattice parameter a=0.289nm. The retained austenite belongs the face-centered cubic(F.C.C.) structure with lattice parameter a=0.360nm. After -80℃/8H subzero heat treatment. The retained austenite would transform into plate-α. During the 450℃ aging processes, the α-plate martensite would be decompose to α + austenite phase, increasing the aging temperature to 550-650℃.The L12-phase(Ni3Al) particles would be found within the matrix . The lattice parameter of the L12-phase is a=0.375nm. Compared with the other workers studies , increasing the SHT temperature to 980-1050℃, the precipitation of the B2-phase(NiAl) will be inhibited.

並列關鍵字

Microstructure α phase Austenite Subzero treatment

參考文獻


[2] Seetharaman, V., Sundararaman, M., and Krishnan R., 1981, ”Precipitation Hardening in a PH 13-8 Mo STAINLESS steel” Mater.Sci.Eng.47, pp1-11.
[3] Garrison, W. M., and Brooks, J. A., 1991, ”The thermal and mechanical stability of austenite in the low carbon martensitic steel PH 13-8” Mater. Sci. Eng., A 149, pp65-72.
[4] Bajguirani H. H. R., 2002, “The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel” Mater. Sci. and Eng.A338, pp142-159.
[6] Allan, G. K., 1995, “Solidification of Austenitic Stainless Steels”, Ironmaking and Steelmaking, Vol. 22, No. 6, pp465-477.
[7] Suutala, N., Takalo, T., and Moisio, T., 1980, “Ferritic-Austenitic Solidification Mode in Austenitic Stainless Steel Welds,” Metallurgical Transactions A, Vol. 11A, No. 5, pp717-725.

被引用紀錄


Yang, H. Y. (2009). 無線隨意網路中以虛擬骨幹為基礎之路由協定 [doctoral dissertation, National Tsing Hua University]. Airiti Library. https://doi.org/10.6843/NTHU.2009.00049
沈宗樺(2010)。鐵-15.5鉻-4.5鎳-3鉬-1錳-0.1碳合金球化處理對機械性質之影響〔碩士論文,國立屏東科技大學〕。華藝線上圖書館。https://doi.org/10.6346/NPUST.2010.00229
Kuo, K. L. (2007). 無線網路通訊協定對合作式波束成型技術之影響分析與改善 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2007.00128
Lin, S. H. (2006). 無線感測器網路上最佳能源效率資料儲存機制 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2006.02447
黃俊傑(2012)。增加分散式高斯賽德爾繞送演算法之平行度於無線感測網路〔碩士論文,國立中正大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0033-2110201613514003

延伸閱讀


國際替代計量