透過您的圖書館登入
IP:160.79.109.136
  • 學位論文

應用光譜及光譜影像檢測雞隻屠體及其病灶之研究

Application of Spectroscopy and Spectral Image to Detect Chicken Carcasses and Their Lesions

指導教授 : 謝清祿

摘要


本研究利用希望透過商業用(波長範圍400-1000 nm),波長間隔1nm)、本實驗室自行開發的超分光光譜影像系統(波長範圍400~1100 nm,波長間隔0.3 nm),進行比較,奠定未來超分光影像系統在線上作業使用。 本研究雞隻屠體樣本分析為140隻,合格為70隻、不合格70隻,希望透過不同儀器間檢測出的光譜進行比較,並透過主軸成份分析的權重值找出主要波長,腹部為442.4、580、582、800.3 nm,背部為441.8、480、580、917.6 nm,所得到主要波長範圍大多位於400-700nm,為可見光範圍。 另外,將光譜進行平滑化、移位化、正規化減少雜訊、干擾之後,不合格在500-600 nm之間的波峰有明顯的區分。本研究所進行的光譜檢測著重於皮膚判別,因此利用主要波長更進一歩地分析不同病灶與主要波長的相關性。 將合格、不合格的雞隻屠體腹部、背部各別進行主軸成份的分數值(Score)中的Score2、Score4、Score6、Score8、Score10進行誤判,所得到的準確率為90%。並將Score2、Score6、Score10進行訓練組(Training)、測試組(Testing)所得準確率為90%。

並列摘要


In this study, the visible/near infrared spectroscopy detection technique is nondestructive development of fairly mature detection technology, and the wavelength range of 400-1000 nm and interval of 1 nm. The laboratory had developed hyperspectral imaging system with wavelength range 400-1000 nm and interval of 0.3 nm . The research purpose of a comparison was made between visible/near infrared and hyperspectral imaging system.In the future, the chicken carcasses samples spectral method for automated on-line inspection . It had been used as a research to identify key wavelengths for detected 70 wholesome chicken carcasses and 70 unwholesome chicken carcasses ,and classified analysis for wholesome and unwholesome chicken samples .To used principal component analysis (PCA) and classified to wholesome, unwholesome were differentiated from each other with high accuracy. key wavelengths were identified intensity of abdomen loading weights at 442.4、580、582、800.3 nm for PC1and PC2.And key wavelengths were identified intensity of back loading weights at 441.8、480、580、917.6 nm PC1and PC2, in conclusion were wavelengths at visible wavelength region. Three pre-processing steps include smoothing, offset, normalization methods and the results to showed obvious difference in classification accuracy spectroscopy. In general, the classification accuracy was improved by increased the number of scores of input data, including score 2, score 4, score 6, score 8, score 10 to achieved 90%. The training achieved 90% classified wholesome and unwholesome. The testing achieved 90% classified wholesome and unwholesome 90%.

參考文獻


analysis),揚智文化事業股份有限公司,264-272。
3.周震煌,周瑞仁,蕭介宗,2007,「以可見光/近紅外線光譜鑑別國產冷藏與進口冷凍再解凍雞腿」,國立台灣大學生物產業機電工程系,農業機械學刊,第2卷,第16期,第1-11頁。
13.張嘉麟,陳世銘,1999,近外光與核磁共振應用於乳粉脂肪含量之檢測,農業機械學刊,第8卷,第3期,第43-60頁。
16.盧敬忠,2008,超光譜影像系統控制程式及強度校正的建立,碩士論文,國立屏東科技大學,生物機電工程系,屏東。
6.陳俊榮,2011,建立超分光光譜影像分辨國產合格與不合格雞隻屠體檢測技術之研究,碩士論文,國立屏東科技大學,機械工程系,屏東。

被引用紀錄


許舒揚(2015)。應用可見光與近紅外線光譜分析國產鮮羊乳及生羊乳品質之研究〔碩士論文,國立屏東科技大學〕。華藝線上圖書館。https://doi.org/10.6346/NPUST.2015.00161
康筑雅(2014)。應用程式語言開發光譜影像分析之圖形介面-以雞隻屠體為例〔碩士論文,國立屏東科技大學〕。華藝線上圖書館。https://doi.org/10.6346/NPUST.2014.00215
吳光亞(2011)。不同蹲踞式起跑之下肢肌電訊號與等速肌力特徵分析〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-1610201315243028

延伸閱讀