透過您的圖書館登入
IP:18.226.98.166
  • 學位論文

科技大學教室內冷氣機濾網之截留灰塵中金屬成份分析

Metal Concentrations of Dust in Air-Conditioner Filters in Indoor Environment of a College

指導教授 : 謝連德

摘要


根據台灣環保署報告顯示,國人每人每天約有80~90%的時間處於室內環境中(包括在住家、辦公室、學校或其他建築物內),灰塵在室內環境中經常可見,其散佈於空氣中或是附著於電器產品表面、家俱。灰塵容易累積於牆角間或是大型家具底下之地面等。而人們在室內活動的過程中,經常不經意與室內灰塵接觸甚至食入,將可能對人體產生直接或間接的危害。 本研究採集於國立屏東科技大學選定三種不同型態之室內空間,利用微波消化萃取法與感應耦合電漿/原子光譜發射分析儀檢測實驗室、研究室及教室內之室內空調系統濾網上截留之灰塵中其重金屬成分特徵。 發現室內空調系統濾網上截留之灰塵中重金屬所佔濃度,A、B及C分別為 Cd: 6.1±1.9、7.7±4.3及3.3±0.5 µg/g;Cr: 217.9±94.1、159.8±45.5及206.8±116.9 µg/g;Cu:1026.4±127、933.6±177.7及721±287.4 µg/g;Ni: 115.4±74.1、122.6±26.7及140.1±72.5 µg/g;Pb: 419.9±127.1、656.4±607.4及368.6±126.3 µg/g;Zn: 2176±663.3、2308.2±144.9及1597.5±478.6 µg/g。 三個採樣點之金屬濃度比較,Cr、Cu、Mn及Zn在實驗室濃度較高,其可能源自於金屬表面磨損、周邊汽機車排放、藥品逸散;Cd、Pb、Zn則在研究室濃度較高,其可能源自室外來源、存在過去含有Pb焊料等產品、汽機車排放;而Ni在教室濃度較高,其可能源自於周邊汽機車排放。

並列摘要


According to the report of the Taiwan Environmental Protection Agency, about 80 to 90% of the time each person in the country is in an indoor environment (including at a home, office, school, or other buildings). Dust is often visible in indoor environments and is scattered in the air;or attached to the surface of electrical products,and the furnitures. Dust is easily accumulated in the corners of the walls or under the large furnitures. In the process of indoor activities, people often contact or even ingest indoor dust inadvertently, which may cause direct or indirect harm to the human body. This study was collected at National Pingtung University of Science and Technology to select three different types of indoor spaces, using microwave digestion extraction method and inductively coupled plasma/atomic emission analyzer to test the indoor air conditioning system filter in the laboratory, the research room and the classroom. The characteristics of heavy metal in the trapped dust. It was found that the concentration of heavy metal in the dust trapped on the filter screen of the indoor air-conditioning system, A, B and C were respectively cadmium: 6.1±1.9, 7.7±4.3 and 3.3±0.5 μg/g; chromium: 217.9±94.1, 159.8±45.5 and 206.8 ± 116.9 μg/g; copper: 1026.4 ± 127, 933.6 ± 177.7 and 721 ± 287.4 μg/g; nickel: 115.4 ± 74.1, 122.6 ± 26.7 and 140.1 ± 72.5 μg/g; lead: 419.9 ± 127.1, 656.4 ± 607.4 and 368.6±126.3 μg/g; zinc: 2176±663.3, 2308.2±144.9 and 1597.5±478.6 μg/g. Compared with the metal concentrations at three sampling points, chromium, copper, manganese and zinc are higher in the laboratory, which may caused by metal surface wear, peripheral locomotive emissions, and drug escaping; cadmium, lead, and zinc are concentrated in the laboratory, which may be derived from outdoor sources, products containing lead solder which is in a period of the past time, and locomotive emissions; The higher concentration in the classroom may be due to emissions from surrounding steam locomotives.

參考文獻


從MBA智庫百科中,可以獲得相關係數之重要資訊(http://wiki.mbalib.com/zh-tw/%E7%9B%B8%E5%85%B3%E7%B3%BB%E6%95%B0)
從MBA智庫百科中,可以獲得主成分分析法之重要資訊(http://wiki.mbalib.com/zh-tw/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90%E6%B3%95)
陳重仁,2012,科技大學校園內不同室內類型甲醛濃度探討,碩士論文,屏東科技大學,環境工程與科學系,屏東。
吳啟瑋,2015,利用冷光報導基因法評估教室灰塵中有機污染物之毒性效應及其健康風險,碩士論文,屏東科技大學,環境工程與科學系,屏東。
廖經淳,2017,汽車拆解廠廠區大氣懸浮微粒上金屬濃度分析,碩士論文,屏東科技大學,環境工程學系,屏東。

延伸閱讀