透過您的圖書館登入
IP:18.119.136.235
  • 學位論文

電洞傳輸材料摻雜於鈣鈦礦主動層之太陽能電池研究

The study of perovskite solar cells by doping hole transporting material in active layer

指導教授 : 蘇水祥
本文將於2026/08/23開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本論文分別將不同的電洞傳輸材料摻入前驅溶液 PbI2 中,並改變鈣鈦礦膜層的旋塗轉速,以連續溶液法製作出鈣鈦礦太陽能電池探討其光電特性。透過CuPc、m-MTDATA、PTAA 三種摻雜材料與鈣鈦礦之間形成電荷轉移,降低最低未佔據分子軌域(LUMO)以及最高已佔據分子軌域(HOMO)之間的能隙差異,使激子僅需較小的光子能量便能分離電子與電洞,增加主動層內電荷的產生,且藉由調變摻雜濃度對元件性能進行優化,並提高旋塗轉速改變主動層膜厚。 研究中鈣鈦礦電池元件結構為 ITO/PEDOT:PSS/perovskite/PCBM/Ag,與perovskite 未摻雜電洞傳輸材料且轉速為 6000 rpm 之太陽能元件相比,在轉速提升到 8000 rpm 時,perovskite 未摻雜的元件只能維持約 73%的能量轉換效率(power conversion efficiency, PCE),perovskite:5wt% CuPc 的電池元件則可維持約86%的能量轉換效率,perovskite:10wt% m-MTDATA 的電池元件可維持約 94%的能量轉換效率,而 perovskite:10wt% PTAA 的電池元件僅能維持 75%的能量轉換效率。 研究結果顯示,摻雜傳輸材料於鈣鈦礦膜層中能改善電荷傳輸效率,當鈣鈦礦膜層變薄時,電池元件得以維持較高能量轉換效率。

關鍵字

none

並列摘要


In this thesis, different hole transporting materials were mixed into the precursor solution PbI2, and the spin-coating speed of the perovskite film was changed. The perovskite solar cells were fabricated by continuous solution method to investigate the photoelectric characteristics of the perovskite solar cells. the additions of CuPc, mMTDATA, PTAA compound to perovskite active layer for enhanced charge transfer process by charge transfer process between CuPc, m-MTDATA, PTAA and perovskite, Reduced the energy gap which between the lowest unoccupied molecular orbital(LUMO) and the highest occupied molecular orbital (HOMO), that Less photon energy can generate electrons and holes, increasing the carrier concentration in the active layer. The performance of the device was optimized by adjusting doping concentration, and then increase the spin-coating speed to change the thickness of the active layer. The structure of the perovskite solar cell is ITO/PEDOT: PSS/perovskite/PCBM/Ag. When the spin-coating speed of perovskite films is adjusted from 6000 rpm to 8000 rpm, the power conversion efficiency (PCE) of undoped-perovskite solar cell only maintains at 73%. At the same time, the PCE of 5 wt% CuPc, 10 wt% m-MTDATA, and 10 wt% PTAA-doped solar cell maintains at 86%, 94%, and 75%, respectively. The results show that doping the transporting materials in the perovskite film indeed improve the charge transporting ability. When the perovskite layer becomes thinner, the solar cells can maintain a higher PCE.

並列關鍵字

none

參考文獻


[1] E. Becquerel, “Mémoire sur les effets électriques produits sous l'influence des rayons solaires”, Comptes Rendus, vol.9, P.561-567 (1839)
[2] D. M. Chapin, C. S. Fuller, G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power”, Journal of Applied Physics, vol.25, Issue 5, P.676-677 (1954)
[3] 莊嘉琛,“太陽能工程–太陽能電池篇”,全華科技圖書 (1997)
[4] M. Gratzel, “Photoelectrochemical Cells”, Nature, vol.414, P.338-344 (2001)
[5] W. Shockley, H. J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells”, Journal of Applied Physics”, vol.32, Issue 4, P.510-519 (1961)

延伸閱讀