透過您的圖書館登入
IP:18.222.98.23
  • 學位論文

聚乙烯醇-可溶性澱粉化學交聯細胞支架的特性與細胞培養應用於組織工程

Cell culture and characterization of cross-linked poly(vinyl alcohol)-graft-starch 3D scaffold for tissue engineering

指導教授 : 謝文權

摘要


本實驗的研究目的是利用聚乙烯醇(PVA)與可溶性澱粉(Starch),經由化學交聯方法,製作出吸水性強、多連孔洞、結構穩定,且利於細胞生長的3D 細胞支架材料。化學交聯的PVA-g-Starch 3D 細胞支架,由傅立葉紅外線光譜儀(FT-IR)的試驗可以得知,此兩種高分子可以透過化學交聯方法形成共聚合物,其吸水性最高可以達到800%。藉由拉力試驗也可以得知,隨著混合的可溶性澱粉濃度的增加,3D 細胞支架材料的強度也會有所增加,最高可以達到4 x10^-2 MPa。 由電子顯微鏡(SEM)觀察材料可知,利用一定轉速製作的3D 細胞支架材料,可以得到大量的孔隙。在模擬人體的酵素分解實驗中,3D 細胞支架材料在各種酵素的分解下,28天內分解率平均可達到約30-60%的分解效果。 體外實驗中可知細胞可以在3D 細胞支架材料中增殖、生長,在6天與細胞支架的共培養後,最高可達到約20 x 10^4。能量散射光譜儀(EDS)分析,能夠更進一步證實此細胞支架材料具有生物可相容性(Bio-compostable)。由以上結果可以得知,此細胞支架材料未來可能可以做為再生醫療之應用。 最後,與本實驗室另一組以幾丁聚醣作為添加物的研究比較中,可以得知,以澱粉作為添加物的支架在膨潤度與酵素分解數據有顯著的差異。

並列摘要


The research goal of this experiment is chemically to crosslink poly(vinyl alcohol) (PVA) and starch to form a 3D scaffold that is effective water absorbent, has a stable structure, and supports cell growth. PVA and starch can be chemically cross-linked to form a PVA-g-Starch 3D scaffold polymer, as observed by Fourier transform infrared spectroscopy (FT-IR), with an absorbency of up to 800%. Tensile testing reveals that, as the amount of starch increases, the strength of the 3D scaffold strength reaches 4 × 10^−2 MPa. Scanning electron microscope (SEM) observations of the material reveal that the 3D scaffold is highly porous formed using a homogenizer at 500 rpm. In an enzymatic degradation, the 3D scaffold was degraded by various enzymes at a rate of up to approximately 30–60% in 28 days. In vitro tests revealed that cells proliferate and grow in the 3D scaffold material. Maximum number of cells about 20 x 10^4 after 6 days of culture. Energy dispersive spectrometer (EDS) analysis further verified that the bio-compatibility of this scaffold. Finally, the experimental results suggest the degree of swelling and degradation rate are significantly different compared with using starch and chitosan as an additive of the 3D scaffold.

參考文獻


[1]Y.W. Wang, Q. Wu, and G.Q. Chen, Attachment, “proliferation and differentiation ofosteoblasts on random biopolyesterpoly (3-hydroxybutyrate-co-3-hydroxyl- hexanoate) scaffolds” Biomaterials 25:669-675(2004).
[2]J. Jiang, N. Kojima, T. Kinoshita, A. Miyajima, W. Yan, Y. Sakai, “Cultivation and inductionof fetal liver cells in poly-L-lactic acid scaffold” Materials Science and Engineering C24:361-363(2004).
[3]Z. Li, H.R. Ramay, K.D. Hauch, D. Xiao, and M. Zhang, “Chitosan–alginate hybrid scaffolds for bone tissue engineering” Biomaterials 26:3919-3928(2005).
[4]Wen-Chuan Hsieh, Wan-Nan Uang Chen, Shih-Jung Yang, Hsin-Hao Chou, “ 3D tissue culture and fermentation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from Burkholderiacepacia D1” Journal of the Taiwan Institute of Chemical Engineers, 57: 250-255(2011).
[5]Chih-FengKuo, Nina Tsao, Hsin-Hao Chou, Yi-Ling Liu, Wen-Chuan Hsieh, “Release of FITC-BSA from poly(L-lactic acid) microspheres analysis using flow cytometry” Colloids & Surfaces B : Biointerfaces, 89:271-276(2012).

延伸閱讀