透過您的圖書館登入
IP:3.14.253.221
  • 學位論文

銅片成長銅氧化物與常壓電漿沉積二氧化鈦異質奈米結構於光電化學產氫之應用研究

Hetero-nanostructure of Copper Sheet Grown Copper Oxides and Titanium Dioxide Deposited by Atmospheric Pressure Plasma System for Photoelectrochemical (PEC) Hydrogen Generation Application

指導教授 : 劉文仁
本文將於2027/08/01開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本研究採用簡單且低成本的加熱及常壓電漿實驗方式在銅片上成長銅氧化物奈米線膜層,利用自製的常壓電漿鍍膜系統及加熱設備的混成製程(PT-300空氣電漿300 °C-10 min +熱氧化法300 °C-50 min),在低溫300 °C下所生長出來的銅氧化物奈米線膜層具備優良的比表面積及薄膜相對穩定的特性,並且在0V(vs. RHE)時有最佳的光電流密度約為-2.92 mA/cm2。為了進一步提升整體光電化學產氫之效率,本實驗另使用常壓電漿噴流系統搭配化學氣相沉積法,在高比表面積的銅氧化物奈米線膜層上,沉積二氧化鈦奈米顆粒形成PN異質結構,有效提升電子-電洞對分離的效率。實驗結果在TiO2-9s(PT-300 + 沉積 TiO2奈米顆粒9 s)時,測得在0 V(vs. RHE)時有最佳的光電流密度約為-6.37 mA/cm2,其太陽能產氫效率最大可達約1.1%。

並列摘要


In this study, a simple and low-cost experimental methods was used to fabricate copper oxide nanowire on copper foil. The experimental process will be preformed by using the thermal oxidation method and the mixing process (PT-300, Air plasma 300 °C-10 min + Thermal oxidation 300 °C-50 min) of the heating plate and atmospheric pressure plasma system. The copper oxide nanowires have excellent specific surface area and relatively stable films grown at a low temperature( 300 ° C) ,and the maximum photocurrent density value of the monolayer was -2.92 mA/cm2 measured at 0 V (vs. RHE). In order to further improve the overall photo-electro-chemical (PEC) hydrogen production efficiency, this experiment also used atmospheric pressure plasma system with chemical vapor deposition to deposit titanium dioxide nanoparticles on copper oxide nanowires with high specific surface area to form P-N hetero-structure, that obviously increase efficiency of electron-hole pairs separation. Experimental results show that the maximum photocurrent density value of the P-N hetero-structure film was -6.37 mA/cm2 at TiO2 - 9s (PT-300 + TiO2 nanoparticle deposition for 9s) at 0 V (vs. RHE), and the maximum solar hydrogen conversion efficiency is about 1.1%.

參考文獻


[1]. 中央氣象局數位科普網(航空氣象-輻射冷卻),https://ctasataiwan.com/%E3%80%90%E8%88%AA%E7%A9%BA%E6%B0%A3%E8%B1%A1%E8%BC%BB%E5%B0%84%E5%86%B7%E5%8D%BB%E3%80%91/
[2].能源教育資源總中心(能源小常識),https://learnenergy.tw/index.php?inter=knowledge&caid=5&id=666
[3]. W. K. C. Yung, B. Sun, Z. Meng, J. Huang, Y. Jin, H. S. Choy, Z. Cai, G. Li, C. L. Ho, J. Yang and W. Y. Wong, Additive and photochemical manufacturing of copper, Scientific Reports, 6 (2016) 39584, 1-9.
[4]. 黃貫宇,氧含量對氧化亞銅熱縮效應的影響,中央大學物理學系,2012年。
[5]. J. L. Murray, Phase Diagrams of Binary Titanium Alloys, American Society for Metals International, (1987 version), 211-229.

延伸閱讀